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Introduction 

In many fields of study, research questions involve life course events that can 
happen repeatedly over time, such as injuries, hospital admissions, risk events, etc. 
Researchers analyzing such data are often concerned with both the “if” and “when” of 
event occurrence. Traditional survival analysis methods, however, are most commonly 
applied to situations in which the outcome of interest that can occur only once for each 
subject under study.   Different models, or at least adaptations of these traditional survival 
analysis techniques, are needed to examine data involving recurrent events. 

One setting in which such models are needed is the study of hospitalizations 
among new enlistees in the United States Army.  Early hospitalizations of enlistees are 
not only quite costly, but have been shown to be a strong risk factor for another costly 
problem -- early attrition.  Hence, it is of interest to understand the risk factors for early 
hospitalizations, and multiple hospitalizations, among new enlistees. 

A number of multivariate regression models have been proposed for use with 
recurrent events. 1-5  In this study, we will apply five different recurrent models that have 
been proposed in the scientific literature to Army enlistee hospitalization data, and to 
closely related data simulations.  We will examine results for consistency across models, 
and for robustness of each model as alterations are made to event timing, percentage of 
subjects experiencing events, and sample size. 
 
Methods 
Five different recurrent models were compared by using SAS procedures: Poison Process, 
Counting Process, Conditional A, Conditional B, and Marginal. Each of these models 
will be used to estimate the influence of several three factors (hospitalization timing, 
proportion of subjects hospitalized, and sample size) on control variable effect estimates.   
The control variables include gender, race, age, Armed Forces Qualification Test (AFQT) 
percentile score,  indicators of body weight (underweight or overweight), and an indicator 
of medical qualification status at the time of application for service (qualified, 
temporarily disqualified, permanently disqualified). 
 
Details of the models to be used are given below. 
 
The Poison process model 

The Poison model is essentially event counting, with the assumption that each 
event is independent of other events.  Under this model, a subject contributes to the risk 
set for an event as long as the subject is under observation.  Further, it is assumed that all 
time periods of the same length have the same probability of an event occurring.  In the 
current setting, it should be noted that some hospitalization causes (e.g. injuries which 
leave a subject at greater risk for subsequent injury) might not satisfy the above 
assumptions. 

This model ignores the order of the events, leaving each subject to be at risk for 
any event as long as they are still under observation. The data structure for the Poison 



model would consist only of the length of time at risk and the number of events 
experienced during that time. 

 
The counting process model 

 
The second model is the counting process. This model assumes that each event is 

independent. A subject contributes to the risk set for an event as long as the subject is 
under observation at the time the event occurs; the data for a subject with multiple events 
could be described as data for multiple subjects while each subject has different entry 
date and is followed until the next event occurs.  For example, in the data set we see that 
the first subject will be at risk for any event occurring between 0 and 80 months and 
subject two for any events occurring between 0 and 71 months. 
 

This model, thus, ignores the order of the events leaving each subject to be at risk 
for any event as long as they are still under observation at the time of the new event 
occurring. This implies that a subject could be at risk for a subsequent event without 
having experienced the prior events. Since this model ignore the event order, same as the 
Poison model, for some causes of hospitalization, it might not be fine. But for some 
causes of hospitalization, which can’t be recovered well, such as asthma, mental disease, 
Schizophrenia, etc, it might be improper to use this model. 
 
The conditional model A 
 
 The third model is a conditional model. Using such a model, it assumes that it is 
not possible for a subject to be at risk for event 2 without having experienced event 1. It 
means if a subject is at risk for a subsequent event, then it is already having experienced 
the previous event; In order to contract the data in such an order, a strata variable is 
designed to indicate the event number. In this model the time interval of a subsequent 
event starts at the end of the time interval for the previous event. 

This model is useful for modeling the full time course of the recurrent event 
process. In the data set the time intervals are set up exactly the same as in the counting 
process model with each time interval starting at the time of the previous event occurring. 
But the difference between this model and the counting process model is that we are 
using the stratum variable to keep track of the event number; thus, ensuring that it is not 
possible to be at risk for subsequent events without having experienced the previous 
events. 
 
The conditional model B 

Next model is also a conditional model. This model only differs from the 
Conditional Model A in the way how the time intervals are structured. For the data, each 
time interval starts at zero and ends at the length of time until the next event occurs. The 
result is that the risk sets for each of these conditional models are completely different 
and the questions that these analysis answer are also very different. This model is very 
useful for modeling the time between each of the recurring events rather than the full 
time period of the recurrent event process. In the data set the first subject experiences 
four time intervals which each start at time zero but end at the length of time until the 



next event. This model ignores the length of full time period. For the data including a lot 
of subjects without events, it might overestimate the significance of the factors we 
studied. 

As in Conditional Model A we use the stratum variable to keep track of the event 
number; thus, ensuring that it is not possible to be at risks for subsequent events without 
having experienced the previous events. 
 
 
The marginal model 

In the marginal model each event is considered as a separate process.  We assume 
that the time for each event starts at the beginning of follow up time and ends at the time 
of event occurring or to the end of the follow up time; Each subject is considered to be at 
risk for all events; The number of events at risks for all subjects are the same, which is 
the maximum number of events among all subjects. In other word, all subjects in the 
study contribute follow up times to all possible recurrent events. The marginal model 
considers each event separately and models all the available data for the specific event. 
By using the marginal model, the size of the data set is much bigger than that used by 
other models, especially, if there are a lot of subjects without experienced events. 

Table 1 below shows the data structures necessary to implement each of the 
models described above.  In this table, the “Time” variable shows the observation time 
(in months) used in the various models. The variable “Event” shows the number of events 
(in this case, hospitalizations) occurring in the given period. Finally the variable “Status” 
shows indicates the ordering of events (those with multiple events showing Status=1 
indicate models that do not consider event order). 
Table 1: Data Structure: 



 
Table 1.  Structure of Recurrent Event Data for Various Models 
 
 
 
 

 

Model EnlisteeTime(month) Event Status Enlistee Time Event Status
Poison Process 1 (0,  80) 4 1 2 (0,71) 2 1
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(9, 56] 1 1 (62,71] 0 1
(56, 80] 1 1
(0, 5] 1 1 (0, 32] 1 1
(5, 9] 1 2 (32, 62] 1 2
(9, 56] 1 3 (62, 71] 0 3

(56, 80] 1 4
(0, 5] 1 1 (0, 32] 1 1
(0, 4] 1 2 (0, 30] 1 2
(0, 47] 1 3 (0, 9] 0 3
(0, 24] 1 4
(0, 5] 1 1 (0, 32] 1 1
(0, 9] 1 2 (0, 62] 1 2
(0, 56] 1 3 (0, 71] 0 3
(0, 80] 1 4 (0, 71] 0 4

2

2

2

2

Conditional B 1

Marginal 1

1Counting Process

Conditional A 1



 
 
For all models except the Poisson process, we use the proportional means regression 
model.  For each observation 

β'
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where M(t) is  the Mean Cumulative Function (MCF) for the number (or associated cost) 
of events of interest up to time t; X’ is a vector of time invariant covariates; and M0(t) is a 
baseline MCF. 

 
For the Poison regression, SAS/genmod procedure will be used.  For all other 

models we will use SAS/PHREG. 
 
Data 
In this study we use both true data and simulated data. The true data consists of follow-up 
on all enlistees who began Army service from 1999 to 2002 for hospitalizations occurring 
during this same period. The life data is censored at Dec. 31 2002 or the date, when the 
enlistee left the service. 
 
The simulated data are based on the true data, but three features of the data are altered to 
determine the influence of three factors (hospitalization timing, proportion of subjects 
hospitalized, and sample size) on control variable effect estimates. 
Each of the generated data sets, described in detail below, was generated, 100 times each: 

 
1. Hospitalization timing: 
 
1.1. Early hospitalization 
For each enlistee hospitalized k times, we set the date of first hospitalization at x days 

from the beginning of service, at 2x days for second hospitalization, …k*x days in the kth 
time, where k=1, 2, 3.  Eight datasets of this type were generated using  x=5, 10, 15, 20, 
30, 60, 70 and 80. 

 
1.2 Late hospitalization 
Similar to above, but the hospitalization date was start counting from the date, when 

they left the service, or the censor enduing date December 31, 2002.  The total eight data 
sets were generated by selecting  x=5, 10, 15, 20, 30, 60, 70 and 80. 

 
2. Proportion of subjects hospitalized 
In the true data, about 6% of subjects were hospitalized.  Simulated data with 

different hospitalization proportions were created using a stratified sampling technique to 
select subsets of hospitalized and non-hospitalized subjects from the true data. The ratios 
of hospitalized to non-hospitalized subjects selected were set to be 1:19, 1:9, 1:7,1:4 and 
1:3 respectively. Thus, the hospitalization rates were about 5%, 10%, 12.5%, 20% and 
25% in the 5 generated data sets. 

 



3.  Sample size 
Fixing the percentage of hospitalized subjects at 20%, we use stratified sampling to 

select samples of sizes 2000, 4000, 8000 and 10000 from the true data. 
 

Fixing the percentage of hospitalized subjects at 20%, we use stratified sampling to 
select samples of sizes 2000, 4000, 8000 and 10000 from the true data. 
 
Results 
 
True Data 
Table 2 shows the estimated control variable effects from each of the five different 
recurrent events models considered.  It is seen that estimates were quite similar across the 
different models. The marginal model and Poison model have slightly higher significance 
levels than the others; while the two conditional models have slightly lower significance. 
 
Assessing the factors themselves as hospitalization predictors, hospitalization rates were 
significant different by age, gender and AFQT. It is interesting that the presence of an 
initially disqualifying medical condition (presumably surmounted with an accession 
medical waiver) did not have a significant effect on likelihood of hospitalization. 
However, those with a temporarily disqualifying medical condition at the time of 
application had significant higher hospitalization rates than those who did not have any 
initial disqualification. 
 



Table 2:  Control Factors Related to Hospitalization Likelihood:  Influence of Model 
Selection on Estimated Effects 
 
Parameter Model Estimates Standard Error P_value 

Poisson -0.0030 0.001 0.000 
Counting -0.0030 0.001 0.000 
Conditional A -0.0027 0.001 0.001 
Conditional B -0.0026 0.001 0.002 

AFQT 

Marginal -0.0037 0.001 <.0001 
Poisson 0.0210 0.005 <.0001 
Counting 0.0201 0.005 <.0001 
Conditional A 0.0160 0.005 0.001 
Conditional B 0.0186 0.005 0.000 

age 

Marginal 0.0243 0.005 <.0001 
Poisson 0.7751 0.032 <.0001 
Counting 0.7769 0.032 <.0001 
Conditional A 0.7213 0.032 <.0001 
Conditional B 0.6865 0.032 <.0001 

Female 

Marginal 0.7763 0.032 <.0001 
Poisson 0.0734 0.063 0.245 
Counting 0.0660 0.063 0.296 
Conditional A 0.0640 0.063 0.312 
Conditional B 0.0618 0.063 0.328 

Perm DQ 

Marginal 0.0890 0.063 0.159 
Poisson 0.1289 0.045 0.005 
Counting 0.1261 0.045 0.006 
Conditional A 0.1049 0.045 0.021 
Conditional B 0.1106 0.045 0.015 

Temp DQ 

Marginal 0.1485 0.045 0.001 
Poisson 0.0241 0.033 0.457 
Counting 0.0242 0.033 0.456 
Conditional A 0.0165 0.033 0.612 
Conditional B 0.0171 0.032 0.599 

Over Weight 

Marginal 0.0183 0.033 0.574 
Poisson 0.0943 0.045 0.035 
Counting 0.0942 0.045 0.036 
Conditional A 0.0893 0.045 0.046 
Conditional B 0.0847 0.045 0.059 

Less Weight 

Marginal 0.0897 0.045 0.045 

     
 
 
 



Simulated Data 
 
Table 3 shows the average z-scores of effect estimates from the various data simulation 
scenarios allowing for variation in the timing of hospitalizations.  (Recall that 100 
datasets were created under each scenario -- the results below are the averages of results 
from these.)  These results help to examine the stability of model estimates as the timing 
of hospitalization events among subjects varies. Results from the Poison model are not 
shown since they depend only on the number of events that occur, and thus do not change 
according to the timing of events. 
 
It is seen that, in general, the model estimates remain fairly stable as the timing of events 
is altered.  For example, looking at the Conditional A model, the average z-score for the 
effect of being female when hospitalizations were set to occur an average of every 5 days, 
was 7.13.  As the average time interval between hospitalizations increased, this 
coefficient did not change much, stabilizing at 7.30 as the average time between 
hospitalizations grew to 60 days or more.  The estimated effects of the other factors were 
similarly stable within this model, and indeed within all of the models examined.  Not 
surprisingly, then, the actual coefficient estimates also showed little variation (data not 
shown). 
 
Perhaps the largest impact of timing on effect estimation is seen in the Conditional A 
model when comparing the effect of hospitalizations occurring early in service to those 
occurring late in service.  For example, the z-scores for the “Temporary disqualification” 
variable when the hospitalizations occurred early in service ranged from 0.83-0.98, all far 
from statistical significance.  However, when the hospitalizations occurred late in service, 
the z-scores ranged from 1.87-1.91, a range considered in some settings to indicate 
borderline statistical significance.  A similar pattern was seen for the age variable under 
this model as the hospitalizations moved from early in service to late in service. 
 
Finally, there were no dramatic differences in results from the different models.  The 
Conditional A model and the Counting Process model yielded results very similar to one 
another, and the results from the Conditional B and Marginal models were quite similar 
to one another.  This was true not only of the z-scores, but also of the effect coefficients 
(data not shown).



 
 
 
Table 3: Average Z-scores of Effect Estimates Relating Predictive Factors to Likelihood of Hospitalization:  Applying 
Several Models to Simulated Data 

Hospitalization 
intervals Average z-scores of effects 

Model 
Zero 
Point Days Female age AFQT Over 

DQ 
Less 
Weight Perm DQ Temp DQ

5 7.13 0.38 -0.10 0.32 1.48 1.80 0.83 
10 7.17 0.42 -0.14 0.31 1.52 1.82 0.88 
15 7.23 0.46 -0.15 0.30 1.53 1.87 0.90 
20 7.24 0.50 -0.16 0.28 1.56 1.90 0.96 
30 7.28 0.55 -0.14 0.29 1.60 1.93 0.98 
60 7.30 0.53 -0.14 0.28 1.59 1.92 0.98 
70 7.30 0.53 -0.14 0.28 1.61 1.91 0.96 

Start of 
service 

80 7.30 0.54 -0.15 0.27 1.61 1.91 0.96 
80 8.34 1.76 -1.15 -0.05 1.54 2.51 1.90 
70 8.34 1.76 -1.18 -0.06 1.54 2.50 1.88 
60 8.33 1.74 -1.21 -0.04 1.55 2.50 1.87 
30 8.42 1.78 -1.18 -0.10 1.57 2.50 1.91 
20 8.42 1.78 -1.21 -0.12 1.46 2.54 1.89 
15 8.42 1.74 -1.18 -0.11 1.49 2.53 1.90 
10 8.44 1.78 -1.22 -0.10 1.52 2.58 1.90 

Conditional 
A 

End of 
service 

5 8.50 1.75 -1.21 -0.03 1.54 2.59 1.91 
5 6.71 1.50 -0.83 -0.10 1.47 2.55 1.58 
10 6.69 1.50 -0.82 -0.12 1.48 2.54 1.60 
15 6.74 1.49 -0.80 -0.13 1.49 2.57 1.60 
20 6.76 1.48 -0.80 -0.13 1.48 2.56 1.64 
30 6.83 1.47 -0.79 -0.10 1.50 2.59 1.65 
60 6.86 1.45 -0.80 -0.10 1.48 2.59 1.64 
70 6.85 1.45 -0.80 -0.10 1.50 2.58 1.63 

Start of 
service 

80 6.86 1.46 -0.81 -0.11 1.50 2.58 1.63 
80 8.17 1.26 -0.49 0.08 1.51 2.02 1.41 
70 8.17 1.28 -0.50 0.07 1.52 2.03 1.38 
60 8.15 1.26 -0.54 0.07 1.53 2.03 1.37 
30 8.22 1.26 -0.53 0.10 1.52 2.02 1.37 
20 8.20 1.15 -0.55 0.12 1.50 2.00 1.33 
15 8.19 1.06 -0.49 0.15 1.52 1.97 1.34 
10 8.16 1.02 -0.45 0.21 1.54 1.93 1.28 

Conditional 
B 

End of 
service 

5 8.14 0.97 -0.38 0.24 1.56 1.89 1.26 
5 7.33 0.44 -0.09 0.29 1.44 1.78 0.86 
10 7.38 0.51 -0.14 0.26 1.45 1.81 0.92 
15 7.45 0.54 -0.16 0.25 1.47 1.86 0.94 
20 7.48 0.60 -0.17 0.22 1.48 1.90 1.00 
30 7.53 0.66 -0.16 0.21 1.51 1.97 1.01 
60 7.54 0.65 -0.16 0.20 1.50 1.97 1.00 
70 7.53 0.66 -0.16 0.20 1.52 1.96 0.99 

Counting 
Process 

Start of 
service 

80 7.54 0.67 -0.17 0.20 1.52 1.96 0.98 



80 8.37 1.81 -1.14 -0.09 1.50 2.51 1.91 
70 8.36 1.83 -1.15 -0.10 1.52 2.52 1.88 
60 8.34 1.82 -1.18 -0.09 1.52 2.52 1.87 
30 8.41 1.83 -1.16 -0.07 1.51 2.50 1.87 
20 8.40 1.81 -1.17 -0.08 1.48 2.52 1.87 
15 8.39 1.78 -1.15 -0.07 1.50 2.51 1.87 
10 8.38 1.78 -1.15 -0.06 1.49 2.52 1.87 

End of 
service 

5 8.36 1.78 -1.16 -0.04 1.50 2.53 1.88 
5 7.02 1.53 -0.99 -0.10 1.41 2.58 1.74 
10 7.04 1.53 -0.99 -0.10 1.41 2.59 1.74 
15 7.05 1.53 -1.00 -0.10 1.42 2.59 1.74 
20 7.06 1.53 -1.00 -0.10 1.42 2.59 1.75 
30 7.07 1.53 -1.01 -0.09 1.42 2.60 1.75 
60 7.07 1.53 -1.01 -0.09 1.42 2.60 1.75 
70 7.07 1.53 -1.01 -0.09 1.42 2.60 1.75 

Start of 
service 

80 7.07 1.53 -1.01 -0.09 1.42 2.60 1.75 
80 7.85 1.98 -1.26 -0.05 1.37 2.36 1.74 
70 7.85 1.98 -1.26 -0.05 1.37 2.36 1.74 
60 7.85 1.98 -1.26 -0.05 1.37 2.36 1.74 
30 7.84 1.96 -1.25 -0.04 1.37 2.36 1.73 
20 7.81 1.93 -1.22 -0.01 1.40 2.35 1.74 
15 7.81 1.93 -1.22 -0.02 1.40 2.35 1.73 
10 7.80 1.93 -1.23 -0.02 1.40 2.36 1.74 

Marginal 

End of 
service 

5 7.80 1.93 -1.23 -0.01 1.40 2.36 1.74 

 
 
 
The Hospitalization Rate Effect 
  
Tables 4 and 5 show the average effects and z-scores of effect estimates from the various 
data simulation scenarios allowing for variation in the percentage of subjects 
experiencing hospitalization.  (Recall again that 100 datasets were created under each 
scenario -- the results below are the averages of results from these.) 



 
Table 4. Average Effect Estimates for Predictive Factors:  Applying Several Models to Simulated Data with 
Different Percentage of Hospitalization. 

Model 
Percent of 
subjects 
hospitalized 

Sex Age AFQT Overwt Underwt Perm DQ Temp 
DQ 

0.05 0.726 0.019 -0.003 0.023 0.130 0.235 0.170 
0.10 0.698 0.015 -0.003 0.030 0.099 0.141 0.157 
0.15 0.652 0.017 -0.003 0.026 0.112 0.129 0.137 

Poisson 
 

0.20 0.618 0.017 -0.002 0.022 0.088 0.106 0.118 
0.05 0.700 0.015 -0.003 0.014 0.140 0.187 0.148 
0.10 0.671 0.013 -0.003 0.013 0.104 0.124 0.130 
0.15 0.644 0.014 -0.002 0.016 0.101 0.127 0.123 

Conditional 
A 
 

0.20 0.608 0.015 -0.002 0.019 0.089 0.089 0.104 
0.05 0.664 0.017 -0.003 0.014 0.136 0.188 0.154 
0.10 0.638 0.015 -0.002 0.014 0.100 0.119 0.136 
0.15 0.610 0.015 -0.002 0.016 0.097 0.124 0.126 

Conditional 
B 
 

0.20 0.574 0.016 -0.002 0.020 0.085 0.084 0.108 
0.05 0.739 0.018 -0.003 0.021 0.147 0.211 0.176 
0.10 0.701 0.016 -0.003 0.021 0.106 0.130 0.151 
0.15 0.662 0.016 -0.002 0.021 0.103 0.133 0.137 

Counting 
 

0.20 0.616 0.017 -0.002 0.026 0.089 0.091 0.115 
0.05 0.750 0.020 -0.004 0.014 0.148 0.243 0.205 
0.10 0.719 0.018 -0.003 0.016 0.103 0.158 0.181 
0.15 0.687 0.019 -0.003 0.015 0.099 0.164 0.167 

Marginal 

0.20 0.647 0.020 -0.003 0.021 0.083 0.119 0.145 
 
It is seen that the average effect coefficients and z-scores for the various control factors 
are quite similar regardless of the percentages of subjects hospitalized.  This is true both 
within and across the models considered.  Sex is highly statistically significant in all 
models and across all percentages of hospitalization, while age, AFQT score, and the two 
medical qualification status variables are near statistical significance in all models and 
hospitalization percentages. 
 
It is worth noting that the selected hospitalized and non-hospitalized samples have the 
same distribution by the control factors (sex, age, etc.) as the true data.  Accordingly, the 
estimated effects of these factors should be similar to those from the modeling of the true 
data.  This was, indeed, generally the case (data not shown). 



 
 
Table 5: Average Z-scores of Effect Estimates Relating Predictive Factors to Likelihood of Hospitalization:  
Applying Several Models to Simulated Data with Different Percentage of Hospitalization. 

Model 
Percent of 
subjects 
hospitalized 

Sex Age AFQT Overwt Underwt Perm DQ Temp DQ 

0.05 11.88 2.08 -2.02 0.37 1.54 2.14 2.00 
0.10 13.23 1.85 -1.96 0.55 1.35 1.43 2.14 
0.15 13.87 2.43 -2.04 0.53 1.71 1.47 2.09 

Poisson 

0.20 14.48 2.59 -2.07 0.51 1.46 1.32 1.96 
0.05 11.73 1.62 -1.87 0.21 1.68 1.72 1.76 
0.10 13.07 1.65 -1.79 0.25 1.42 1.27 1.78 
0.15 14.12 1.95 -1.91 0.33 1.56 1.47 1.88 

Conditional 
A 

0.20 14.72 2.28 -2.16 0.44 1.51 1.12 1.75 
0.05 11.11 1.82 -1.85 0.22 1.68 1.78 1.85 
0.10 12.43 1.84 -1.73 0.25 1.39 1.26 1.87 
0.15 13.40 2.17 -1.84 0.32 1.52 1.48 1.94 

Conditional 
B 

0.20 13.94 2.48 -2.06 0.46 1.47 1.09 1.82 
0.05 11.13 1.75 -1.83 0.29 1.60 1.70 1.82 
0.10 12.46 1.78 -1.71 0.34 1.33 1.21 1.82 
0.15 13.46 2.09 -1.80 0.40 1.47 1.42 1.90 

Counting 

0.20 14.06 2.38 -2.04 0.54 1.43 1.06 1.78 
0.05 10.74 1.87 -2.15 0.19 1.53 1.88 2.01 
0.10 11.95 1.92 -2.08 0.24 1.22 1.38 2.05 
0.15 12.84 2.28 -2.24 0.27 1.33 1.62 2.13 

Marginal 

0.20 13.34 2.58 -2.53 0.41 1.22 1.28 2.03 
 
Table 6 shows the standard deviations of the estimated demographic effects in 
simulations with different percentages of subjects being hospitalized. In general, we 
would like to use the method with less standard deviation of estimates, if the estimates 
are unbiased.  Overall, the standard deviations from both conditional models are similar 
to one another, and they are smaller than those from the counting process and marginal 
models. 



 
Table 6: Standard Errors of Effect Estimates:  Applying Several Models to Simulated Data with Different 
Percentage of Hospitalization 

Model 
Percent of 
subjects 
hospitalized 

Sex Age AFQT Overwt Underwt Perm DQ Temp DQ 

0.05 0.046 0.010 0.002 0.058 0.065 0.089 0.072 
0.10 0.035 0.006 0.001 0.034 0.041 0.051 0.056 
0.15 0.028 0.005 0.001 0.028 0.040 0.042 0.045 

Poisson 

0.20 0.022 0.004 0.001 0.026 0.030 0.030 0.029 
0.05 0.048 0.008 0.001 0.046 0.059 0.073 0.063 
0.10 0.032 0.007 0.001 0.035 0.043 0.061 0.045 
0.15 0.028 0.006 0.001 0.028 0.034 0.047 0.040 

Conditional 
A 

0.20 0.023 0.004 0.001 0.020 0.029 0.043 0.033 
0.05 0.047 0.008 0.001 0.044 0.058 0.069 0.061 
0.10 0.032 0.007 0.001 0.034 0.042 0.057 0.045 
0.15 0.028 0.006 0.001 0.027 0.034 0.043 0.039 

Conditional 
B 

0.20 0.022 0.004 0.001 0.020 0.028 0.042 0.033 
0.05 0.054 0.009 0.001 0.050 0.067 0.081 0.072 
0.10 0.035 0.007 0.001 0.039 0.048 0.065 0.050 
0.15 0.031 0.006 0.001 0.031 0.037 0.051 0.043 

Counting 

0.20 0.025 0.005 0.001 0.022 0.031 0.047 0.037 
0.05 0.056 0.009 0.001 0.051 0.070 0.085 0.074 
0.10 0.038 0.008 0.001 0.040 0.050 0.066 0.053 
0.15 0.033 0.006 0.001 0.032 0.041 0.052 0.046 

Marginal 

0.20 0.027 0.005 0.001 0.024 0.033 0.049 0.040 

 
Comparing Tables 4 and 6, it can be seen that for the sex variable, the standard errors are 
much less than their respective mean estimated coefficients for all five models and all 4 
different hospitalization rates.  This means the estimation of this effect is robust across 
the models, and shows that gender is a significant predictor of hospitalization. 
 

For the other demographic factors, the mean coefficients are comparable in size to 
their respective standard errors. This means that the estimated coefficient may not be so 
reliable, and we should not draw conclusions based on only one selected model. 

 
The standard errors of effect estimates are decreasing as the hospitalization rate is 

increasing, as would be expected.   In particular, when the hospitalization rate is about 
20%, the effects estimates for age and AFQT are quite reliable across models.  When the 
hospitalization rate is about 5%, the standard errors are quite large compared to the mean 
estimated coefficients. Model selection and interpretation should be done more carefully 
at such lower levels of hospitalization percentages. 

 



Sample Size Effect 
 
The results in Table 7 show effect estimates from simulated data of various sample sizes.  
The selected numbers of hospitalized individuals were 500, 1000, 1500 and 2000 
respectively, and four times as many controls were selected for each of these cases. 
Hence the hospitalization ratio was 20% overall for each data. As in the previous 
analyses, the distributions of hospitalized and non-hospitalized subjects by the control 
variables (sex, age, etc.) in this simulation were the same as in the true Army 
hospitalization data. 
 
The results indicate that sample size has little effect on the effect estimates regardless of 
which model is used.  As expected, however, larger sample size results in reduced 
standard error and thus greater statistical significance (data not shown). 



 
Table 7: The demographic factor effect s by sample size 
Model Sample Size Sex Age AFQT Overwt Underwt Perm DQ Temp DQ 

2,000 0.546 0.017 -0.003 0.022 0.170 0.293 0.203 
4,000 0.569 0.013 -0.002 0.015 0.122 0.125 0.156 
8,000 0.604 0.020 -0.002 0.020 0.108 0.123 0.115 

Poisson 

10,000 0.618 0.016 -0.002 0.032 0.100 0.110 0.125 
2,000 0.559 0.014 -0.003 0.017 0.174 0.266 0.190 
4,000 0.566 0.011 -0.002 0.008 0.121 0.120 0.147 
8,000 0.601 0.018 -0.002 0.016 0.104 0.120 0.112 

Conditional 
A 

10,000 0.611 0.014 -0.002 0.026 0.097 0.103 0.113 
2,000 0.523 0.016 -0.003 0.016 0.164 0.270 0.190 
4,000 0.536 0.012 -0.002 0.009 0.118 0.113 0.150 
8,000 0.568 0.019 -0.002 0.015 0.103 0.114 0.109 

Conditional 
B 

10,000 0.579 0.015 -0.002 0.027 0.093 0.101 0.116 
2,000 0.548 0.016 -0.003 0.021 0.170 0.283 0.202 
4,000 0.572 0.012 -0.002 0.015 0.122 0.118 0.155 
8,000 0.607 0.020 -0.002 0.020 0.107 0.118 0.115 

Counting 

10,000 0.620 0.016 -0.002 0.032 0.100 0.104 0.123 
2,000 0.580 0.021 -0.004 0.014 0.167 0.348 0.245 
4,000 0.599 0.016 -0.003 0.013 0.121 0.142 0.192 
8,000 0.640 0.023 -0.003 0.016 0.106 0.152 0.135 

Marginal 

10,000 0.651 0.018 -0.003 0.030 0.094 0.142 0.157 

 
 
Conclusions 
 
Five different model types were used to estimate the effects of several demographic 
factors on likelihood of hospitalization among new Army enlistees.  When applying these 
models to actual data over a three-year period, the results from these models were quite 
similar.  This result is somewhat comforting in that the major conclusions to be drawn 
from such modeling would therefore not be dependent on which model was used. 
 
Results from simulated data, generated by making judicious changes to the true data, 
indicated that these models, and their similarity in results to one another, were fairly 
robust.  In particular, it was found that changes in the timing of hospitalizations, the 
percentage of subjects hospitalized, and the sample size did not appreciably alter the 
harmony of findings within or across models. 
 
Nonetheless, some observations were of note from the data simulations: 

• After the Poisson (which does not depend the timing of events) the marginal 
model was the most robust with respect to hospitalization event timing. 

• The Conditional A model was more sensitive to events occurring later in service 
than those occurring earlier. 

• There was considerable similarity in results between the Conditional A and 
counting process models, and between the Conditional B and Marginal process 
models. 



• Estimation of demographic effects was relatively stable as the percentage of 
subjects hospitalized increased. 

• The Conditional models showed generally less variation in results, and lower 
significance levels of demographic effects, than the other models. 

• The estimated effects of several demographic factors on hospitalization likelihood 
were not so reliable when the percentage of subjects hospitalized was low.  In 
such a case, results from several models should be considered, and conclusions 
must be drawn carefully. 

 
 
Modeling of recurrent events while accounting for the timing of those events requires 
extension of traditional survival analysis techniques.  The results of this study indicate 
that any of the five models presented in this paper are adequate choices for the modeling 
of hospitalization data among new Army enlistees, and perhaps in other settings as well. 
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