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Monday  

Morning: Introduction, review of linear mixed models 
(LMMs) and generalized linear models (GLMs) 
Afternoon: Introduction to generalized linear mixed 
models (GLMMs); GLMM modeling. 

 
Tuesday  

Morning: GLMM modeling (cont), features of GLMMs, 
inference for GLMMs.   
Afternoon: Case studies and Summary/Discussion 
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1. Introduction 
Example: Practice style and back pain (Korff, 
Barlow, Cherkin, and Deyo, 1994).   
 
Forty-four primary care physicians in a large 
HMO were classified according to their practice 
style in treating back pain management (low, 
moderate or high frequency of prescription of 
pain medication and bed rest).  An average of 24 
patients per physician was followed for 2 years 
(1 month, 1 year and 2 year followups) after the 
indexed visit.  Outcome measures included 
functional measures (pain intensity, activity 
limitation days, etc.), patient satisfaction (e.g., 
“After your visit with the doctor, you fully 
understood how to take care of your back 
problem”), and cost. 
 

Q1.  Does practice style influence function, 
satisfaction or cost? 

Q2.  How much of the variability in the 
responses is due to physician? 

Q3.  How well are individual physicians 
performing with regard to effectiveness and 
cost? 
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Model for log(cost) at year 1:  Incorporating 
predictors of practice style of the physician, age 
of the patient, whether the back pain was cervical 
or thoracic or neither (yes=1, no=0).   
 
 
 
 
 
 
 
Model for “understand how to care for your 
back” at year 1:  Incorporating predictors of 
practice style of the physician, age of the 
patient, whether the back pain was cervical or 
thoracic or neither (yes=1, no=0).   
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1. b. Overview 
• Hierarchical modelling 
•  Review of Linear Mixed Models (LMMs) and 

Generalized Linear Models (GLMs) 
• Examples of Generalized Linear Mixed 

Models (GLMMs) 
• Modeling using GLMMs 
• Features of GLMMs 
• Inference methods 
• Case studies 
• Discussion and summary 
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1. c. Hierarchical Modeling 
 
Hierarchical data:  Data (responses and/or 
predictors) collected from different levels within 
a study.  Other terminology for the same or 
related ideas:  repeated measures data, 
longitudinal data, clustered data, multilevel data.   
 
Example 1:  Practice style and back pain (Korff, 
Barlow, Cherkin, and Deyo, 1994).   
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Example 2:  The Educational Testing Service in 
the past has offered guidance to both law school 
admissions officers and to potential applicants to 
law school via their Law School Validity 
Studies.  One aspect of this has been to create a 
simple index that allows admission officers to 
screen applicants and for applicants to gauge the 
likelihood of acceptance to a law school before 
applying.   
 
Two of the indicators used for predicting 
success in law school are the LSAT score 
(ranging from 200 to 800) and the undergraduate 
GPA (UGPA).  A form of combining the LSAT 
and UGPA, which has successfully been used in 
the past to predict first year performance at law 
school, has been: 
 
Predicted performance = LSAT + (mult)×UGPA 
 
Where mult is a multiplier chosen to reflect the 
relative importance of LSAT and UGPA and 
which might be dependent on the school doing 
the admissions.  For example, a multiplier of 
200 might make sense since it puts both GPA 
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(typically in a range of 1.0 to 4.0) and LSAT on 
the same scale. 
 
In practice the multipliers have been estimated 
from data taken from admitted students and this 
is done separately for each law school.  The 
estimation was often done by a multiple 
regression of first year performance on both 
LSAT and UGPA.   
 

Q. What is the best way to estimate the 
multipliers for each school? 
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Example 3:  Lack of digestive enzymes in the 
intestine can cause bowel absorption problems.  
This will be indicated by excess fat in the feces.  
Pancreatic enzyme supplements can be given to 
ameliorate the problem.  Does the supplement 
form make a difference?  (Graham DY, Enzyme 
replacement therapy of exocrine pancreatic 
insufficiency in man.  NEJM, 296: 1314-17, 
1977 – But note: sex information made up for 
illustration.) 
 
  Fecal Fat (g/day)   
  Pill type   
PatID
/ Sex 

  None Tablet Capsule Coated 
Capsule 

 Avg 

1 – M  44.5   7.3   3.4 12.4  16.900
2 – M  33.0 21.0 23.1 25.4  25.625
3 – M  19.1   5.0 11.8 22.0  14.475
4 – F    9.4   4.6   4.6   5.8    6.100
5 – F  71.3 23.3 25.6 68.2  47.100
6 – F  51.2 38.0 36.0 52.6  44.450
        
Avg  38.08 16.53 17.42 31.07  25.775
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Example 4:  Propranolol and hypertension 
(Hamet, et al, 1975) 
 
Below are data from an early, double-blind trial 
of the effect of propranolol on labile 
hypertension.  Blood pressure was measured 
under the drug and a placebo both in the upright 
and recumbent positions. 
 
   Blood Pressure (mmHg)   
   Recumbent Upright   
 Patient  Placebo Propran. Placebo Propran  Ave. 
 1  96 71 73 87  81.75
 2  96 85 104 76  90.25
 3  92 89 83 90  88.50
 4  97 110 101 85  98.25
 5  104 85 112 94  98.75
 6  100 73 101 93  91.75
 7  93 81 88 85  86.75
         
 Ave.  96.86 84.86 94.57 87.14  90.86
 

Q1:  Does Propranolol have the same influence 
in recumbent and upright positions? 
Q2:  If the answer to Q1 is yes, is it effective? 
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Analysis Approaches 
 

Basic tenet:  Don’t go beyond standard and 
accepted statistical practices unless necessary. 
 
Applied in this context:  Do we need 
hierarchical models? 
 
The usual statistical methods (multiple 
regression, basic ANOVA, logistic regression, 
and many others) assume observations are 
independent. 
 

Important idea:  observations taken within 
the same subgroup in a hierarchy are often 
more similar to one another than to 
observations in different subgroups, other 
things being equal.  [correlated] 

 
Also getting the correlation assumptions 
wrong in a statistical analysis is often a very 
serious mistake. 
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Simple Analysis Strategies 
 
What strategies might we employ in analyzing 
data from a hierarchical format? 
 
1. Separate analyses for each subgroup. 
2. Analyses at the lowest level in the hierarchy. 
3. Analyses at the highest level in the hierarchy. 
4. Derived variables. 
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Let’s consider an example of each of these and 
advantages and disadvantages. 
 
1. Separate analyses for each subgroup.   
 
Fecal fat example?   
 
The law school example follows this approach 
by calculating separate multipliers for each law 
school.  Here are the multipliers estimated for 
selected law schools for three consecutive years 
and pooling the data across years. 
 
   Separate Years Pooled Years 
 Law 

School 
 Year 1 Year 2 Year 3 Years 

1-2 
Years 
2-3 

 1  2507 301 105 526 164 
 2  -24 49 153 5 116 
 3  179 118 98 149 107 

 
Law schools 1 and 2 were selected as being 
somewhat extreme and 3 was “typical”. 
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2. Analyses at the lowest level in the hierarchy.   
 
For the back pain example this corresponds to 
analyzing each observation on the patient and 
attributing to each one the higher level 
characteristics, e.g., an observation taken from a 
“low” doctor. 
 
 
 
 
 
 
 
3. Analyses at the highest level in the hierarchy.   
 
For the back pain example, this corresponds to 
calculating the average value of the response for 
each doctor across all patients and time periods. 
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4. Derived variable approach.   
 
For the fecal fat example we would calculate 
several new responses:  (1) the difference 
between the none and tablet observations for 
each patient, (2) the difference between the none 
and capsule observations for each patient, (3) 
the difference between the and tablet and coated 
tablet observations for each patient.  These new 
responses are then subjected to one-sample t-
tests. 
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When to Use Hierarchical Models 
 

The use of hierarchical/mixed models is clearly 
indicated in three situations: 
 
1. When the correlation structure is of primary 

interest. 
 
 
2. When we wish to “borrow strength” across the 

levels of a hierarchy in order to improve 
estimates. 

 
(81 law schools and one year of data versus 
2 years of data) 

 
 
3. When dealing with highly unbalanced 

correlated data. 
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2. Review: Linear Mixed Models 
(LMMs) 

 
Analysis of the fecal fat example (Stata) 

summ 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
  fecfat |      24      25.775   20.00214        3.4       71.3   
   patid |      24         3.5   1.744557          1          6   
pilltype |      24         2.5    1.14208          1          4   
 
. sort pilltype 
 
. by pilltype: summarize fecfat 
 
-> pilltype=    none   
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
  fecfat |       6    38.08333   22.47447        9.4       71.3   
 
-> pilltype=  tablet   
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
  fecfat |       6    16.53333   13.32091        4.6         38   
 
-> pilltype= capsule   
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
  fecfat |       6    17.41667   12.93745        3.4         36   
 
-> pilltype=  coated   
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
  fecfat |       6    31.06667    24.2641        5.8       68.2 
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Analyses ignoring sex effects 
 
ANOVA (wrong analysis) 
 
. xi: regr fecfat i.pilltype 
i.pilltype            Ipillt_1-4   (naturally coded; Ipillt_1 omitted) 
 
  Source |       SS       df       MS                  Number of obs =      24 
---------+------------------------------               F(  3,    20) =    1.86 
   Model |   2008.6017     3  669.533901               Prob > F      =  0.1687 
Residual |  7193.36328    20  359.668164               R-squared     =  0.2183 
---------+------------------------------               Adj R-squared =  0.1010 
   Total |  9201.96498    23  400.085434               Root MSE      =  18.965 
 
------------------------------------------------------------------------------ 
  fecfat |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
Ipillt_2 |     -21.55    10.9494     -1.968   0.063      -44.39005     1.29005 
Ipillt_3 |  -20.66667    10.9494     -1.887   0.074      -43.50672    2.173384 
Ipillt_4 |  -7.016668    10.9494     -0.641   0.529      -29.85672    15.82338 
   _cons |   38.08333   7.742396      4.919   0.000       21.93298    54.23369 
------------------------------------------------------------------------------ 
 
. testparm Ipill* 
 
 ( 1)  Ipillt_2 = 0.0 
 ( 2)  Ipillt_3 = 0.0 
 ( 3)  Ipillt_4 = 0.0 
 
       F(  3,    20) =    1.86 
            Prob > F =    0.1687 
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Hierarchical analysis 
 
. xi: xtgee fecfat i.pilltype, i(patid) 
i.pilltype            Ipillt_1-4   (naturally coded; Ipillt_1 omitted) 
 
Iteration 1: tolerance = 1.108e-15 
 
GEE population-averaged model                   Number of obs      =        24 
Group variable:                      patid      Number of groups   =         6 
Link:                             identity      Obs per group: min =         4 
Family:                           Gaussian                     avg =       4.0 
Correlation:                  exchangeable                     max =         4 
                                                Wald chi2(3)       =     22.53 
Scale parameter:                  299.7235      Prob > chi2        =    0.0001 
 
------------------------------------------------------------------------------ 
  fecfat |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
Ipillt_2 |     -21.55   5.451781     -3.953   0.000      -32.23529   -10.86471 
Ipillt_3 |  -20.66667   5.451781     -3.791   0.000      -31.35196   -9.981373 
Ipillt_4 |  -7.016668   5.451781     -1.287   0.198      -17.70196    3.668626 
   _cons |   38.08333   7.067808      5.388   0.000       24.23068    51.93598 
------------------------------------------------------------------------------ 
 
. testparm Ipill* 
 
 ( 1)  Ipillt_2 = 0.0 
 ( 2)  Ipillt_3 = 0.0 
 ( 3)  Ipillt_4 = 0.0 
 
           chi2(  3) =   22.53 
         Prob > chi2 =    0.0001 
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Hierarchical analysis (variation) 
 
. xi: xtgee fecfat i.pilltype, i(patid) robust 
i.pilltype            Ipillt_1-4   (naturally coded; Ipillt_1 omitted) 
 
Iteration 1: tolerance = 1.662e-15 
 
GEE population-averaged model                   Number of obs      =        24 
Group variable:                      patid      Number of groups   =         6 
Link:                             identity      Obs per group: min =         4 
Family:                           Gaussian                     avg =       4.0 
Correlation:                  exchangeable                     max =         4 
                                                Wald chi2(3)       =     11.71 
Scale parameter:                  299.7235      Prob > chi2        =    0.0084 
 
                            (standard errors adjusted for clustering on patid) 
------------------------------------------------------------------------------ 
         |             Semi-robust 
  fecfat |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
Ipillt_2 |     -21.55   6.931847     -3.109   0.002      -35.13617    -7.96383 
Ipillt_3 |  -20.66667   7.349407     -2.812   0.005      -35.07124   -6.262094 
Ipillt_4 |  -7.016668   5.246295     -1.337   0.181      -17.29922    3.265881 
   _cons |   38.08333   9.175163      4.151   0.000       20.10034    56.06632 
------------------------------------------------------------------------------ 
 
. testparm Ipill* 
 
 ( 1)  Ipillt_2 = 0.0 
 ( 2)  Ipillt_3 = 0.0 
 ( 3)  Ipillt_4 = 0.0 
 
           chi2(  3) =   11.71 
         Prob > chi2 =    0.0084 
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Analyses incorporating sex effects 
 
ANOVA (wrong analysis) 
 
. xi: regr fecfat i.pilltype i.sex 
i.pilltype        _Ipilltype_1-4      (naturally coded; _Ipilltype_1 omitted) 
i.sex             _Isex_0-1           (naturally coded; _Isex_0 omitted) 
 
      Source |       SS       df       MS              Number of obs =      24 
-------------+------------------------------           F(  4,    19) =    2.43 
       Model |  3110.21668     4  777.554169           Prob > F      =  0.0837 
    Residual |   6091.7483    19  320.618332           R-squared     =  0.3380 
-------------+------------------------------           Adj R-squared =  0.1986 
       Total |  9201.96498    23  400.085434           Root MSE      =  17.906 
 
------------------------------------------------------------------------------ 
      fecfat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
_Ipilltype_2 |     -21.55   10.33793    -2.08   0.051    -43.18753    .0875334 
_Ipilltype_3 |  -20.66667   10.33793    -2.00   0.060     -42.3042     .970867 
_Ipilltype_4 |  -7.016668   10.33793    -0.68   0.505     -28.6542    14.62087 
     _Isex_1 |      13.55    7.31002     1.85   0.079    -1.750047    28.85005 
       _cons |   31.30833   8.172851     3.83   0.001     14.20236    48.41431 
------------------------------------------------------------------------------ 
 

 
Hierarchical analysis 
 
. xi: xtgee fecfat i.pilltype i.sex, i(patid) 
i.pilltype        _Ipilltype_1-4      (naturally coded; _Ipilltype_1 omitted) 
i.sex             _Isex_0-1           (naturally coded; _Isex_0 omitted) 
 
Iteration 1: tolerance = 1.219e-15 
 
GEE population-averaged model                   Number of obs      =        24 
Group variable:                      patid      Number of groups   =         6 
Link:                             identity      Obs per group: min =         4 
Family:                           Gaussian                     avg =       4.0 
Correlation:                  exchangeable                     max =         4 
                                                Wald chi2(4)       =     24.00 
Scale parameter:                  253.8228      Prob > chi2        =    0.0001 
 
------------------------------------------------------------------------------ 
      fecfat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
_Ipilltype_2 |     -21.55   5.451781    -3.95   0.000    -32.23529   -10.86471 
_Ipilltype_3 |  -20.66667   5.451781    -3.79   0.000    -31.35196   -9.981373 
_Ipilltype_4 |  -7.016668   5.451781    -1.29   0.198    -17.70196    3.668626 
     _Isex_1 |      13.55   11.16389     1.21   0.225    -8.330816    35.43082 
       _cons |   31.30833   8.570992     3.65   0.000      14.5095    48.10717 
------------------------------------------------------------------------------ 
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Hierarchical analysis (variation) 
 
. xi: xtgee fecfat i.pilltype i.sex, i(patid) robust 
i.pilltype        _Ipilltype_1-4      (naturally coded; _Ipilltype_1 omitted) 
i.sex             _Isex_0-1           (naturally coded; _Isex_0 omitted) 
 
Iteration 1: tolerance = 1.219e-15 
 
GEE population-averaged model                   Number of obs      =        24 
Group variable:                      patid      Number of groups   =         6 
Link:                             identity      Obs per group: min =         4 
Family:                           Gaussian                     avg =       4.0 
Correlation:                  exchangeable                     max =         4 
                                                Wald chi2(4)       =     12.80 
Scale parameter:                  253.8228      Prob > chi2        =    0.0123 
 
                            (standard errors adjusted for clustering on patid) 
------------------------------------------------------------------------------ 
             |             Semi-robust 
      fecfat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
_Ipilltype_2 |     -21.55   6.931847    -3.11   0.002    -35.13617    -7.96383 
_Ipilltype_3 |  -20.66667   7.349407    -2.81   0.005    -35.07124   -6.262094 
_Ipilltype_4 |  -7.016668   5.246295    -1.34   0.181    -17.29922    3.265881 
     _Isex_1 |      13.55   12.22942     1.11   0.268    -10.41923    37.51923 
       _cons |   31.30833   4.918175     6.37   0.000     21.66889    40.94778 
------------------------------------------------------------------------------ 
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Notes 
 

• Hierarchical data structures are common. 
• They lead to correlated data. 
• Ignoring the correlation can be a serious error. 
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Fixed versus Random Factors 
 

Definition:  If a distribution is assumed for the 
levels of a factor it is random.  If the values are 
fixed, unknown constants it is a fixed factor. 
 
Ramifications:   
• Scope of inference 

Inferences can be made on a statistical basis 
to the population from which the levels of 
the random factor have been selected. 

• Incorporation of correlation in the model 
Observations that share the same level of the 
random effect are being modeled as 
correlated. 

• Accuracy of estimates 
Using random factors involves making extra 
assumptions but gives more accurate 
estimates. 

• Estimation method 
Different estimation methods must be used. 

 
How to decide in practice? 
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SAS Proc MIXED philosophy:  
fixed factors → MODEL statement 
random factors → RANDOM statement 
additional temporal and spatial correlation 
    → REPEATED statement 

 
 
SAS program for the Propranolol Example 
 
data propran; 
input bp patient upright drug; 
cards; 
96      1      0      0 
71      1      0      1 
73      1      1      0 
87      1      1      1 
96      2      0      0 
85      2      0      1 
104     2      1      0 
76      2      1      1 
  . 
  . 
  . 
92      3      0      0 
93      6      1      1 
93      7      0      0 
81      7      0      1 
88      7      1      0 
85      7      1      1 
 
proc mixed; 
      class patient upright drug; 
      model bp=upright drug upright*drug; 
      estimate "blup pat 1" | patient 1 ; 
      estimate "blup pat 2" | patient 0 1; 
      estimate "blup pat 3" | patient 0 0 1 ; 
      estimate "blup pat 4" | patient 0 0 0 1; 
      random patient; 
      run; 
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SAS Output for the Propranolol Data 
 
               The SAS System       The MIXED Procedure 
                                                   
                             Class Level Information 
                             Class     Levels  Values 
 
                             PATIENT        7  1 2 3 4 5 6 7 
                             UPRIGHT        2  0 1 
                             DRUG           2  0 1 
 
                   REML Estimation Iteration History 
               Iteration  Evaluations     Objective     Criterion 
 
                       0            1  142.68756055 
                       1            1  141.94268164    0.00000000 
                             
                                        Convergence criteria met. 
 
                        Covariance Parameter Estimates (REML) 
 
                         Cov Parm       Estimate 
 
                          PATIENT     15.79761905 
                          Residual    85.79761905 
 
                       Model Fitting Information for BP 
                    Description                        Value 
 
                   Observations                     28.0000 
                   Res Log Likelihood              -93.0259 
                   Akaike's Information Criterion  -95.0259 
                   Schwarz's Bayesian Criterion    -96.2039 
                   -2 Res Log Likelihood           186.0517 
 
                   Tests of Fixed Effects 
 
                   Source         NDF   DDF  Type III F  Pr > F 
 
                   UPRIGHT          1    18        0.00  1.0000 
                   DRUG             1    18        7.70  0.0125 
                   UPRIGHT*DRUG     1    18        0.43  0.5221 
 
 
                   ESTIMATE Statement Results 
 
  Parameter         Estimate     Std Error    DF       t  Pr > |t| 
 
  blup pat 1     -3.86262200    3.17088923    18   -1.22    0.2389 
  blup pat 2     -0.25750813    3.17088923    18   -0.08    0.9362 
  blup pat 3     -0.99973746    3.17088923    18   -0.32    0.7562 
  blup pat 4      3.13554021    3.17088923    18    0.99    0.3358 
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Flowchart 
 

Willing to assume the effects come from a 
distribution?  
 
 
No -       Yes - 
FIXED      RANDOM 
 
    Interest lies in estimating 
 
 
  Only the    Realized value 
  distribution of   of random effect 
  random effects.   and distribution. 
 
 
Estimate variance   Estimate the variance 
components.   components and 
      calculate predicted 
      values. 
 
Assuming a factor is random involves extra 
assumptions but allows broader inferences. 
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Correlation in Mixed Models  
 

Model: 
 

Yijk = blood pressure for person k in  
condition (i,j). 
 
      = µ + pk + αi + βj + (αβ)ij + εijk

 
Covariance: 
 
 Cov(Yijk , Yi′j′k ) = Cov( pk , pk) 
     = Var( pk ) 
 
 correlation = Var( pk )/[Var( pk )+Var( εijk )] 
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Predicting the random effect 
What if we assume a factor is random, but are 
interested in the individual levels of the random 
effects?   

For the balanced data situation of the 
Propranolol data, the form of the best linear 
unbiased predictor is relatively simple and 
informative: 

E[ pk |Y] = E[pk | kY ⋅⋅ ] = best predictor 
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Best Linear Unbiased Prediction 
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In practice: EBLUP (Estimated BLUP) 
 

EBLUP(pk) = )(
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Numerical illustration: 
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Contrast this with the mean for the first patient, 
which is 81.75. 
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BLUPs In Linear Mixed Models 
 

The best predicted value of a random effect 
given the data is u~  = E[random effect|data]. 
 
A BLUP minimizes MSE of prediction among 
linear unbiased predictors: 

  minimize E[ (u~  - u )2 ] 

among u~  which are linear in Y and for which 
E[u~  - u ] = 0. 
 
For linear mixed models the best predictor is 

=BPu~ DZ′V-1(Y-Xβ), 
 
while the best linear unbiased predictor is 

)ˆ('~ 1 βXYVDZu −= −
BLUP  

 
“Shrinkage” estimator. 
 
Bottom line: can be interested in the specific 
levels of a random factor.
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Estimation and Tests in LMMs 
 
Estimation of parameters by maximum 
likelihood or restricted maximum likelihood.  
Maximize the log of the likelihood. 
 
Tests of fixed effects via approximate F- tests 
(SAS PROC MIXED).  
 
Basic idea:  Consider H0:  k′β = 0. 
 
Could do a likelihood ratio test or a Wald test. 
 
 var(k′β)  k′(X′Vˆ ≅ -1X)k 
 

 01
Hunder )1,0(~

)'('

ˆ' N
kXVXk

βk
−

 

 
But need  in place of V. V̂
 
Distribution? 
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Tests of variances of random effects 
 

When using a maximum likelihood analysis the 
typical tests are based on the improvement in the 
maximized value of the log likelihood.  The 
difference in twice the log likelihood is 
compared to a chi-square distribution to test for 
statistical significance.  For testing whether a 
variance component is equal to zero the usual 
method must be slightly modified.  Ordinarily 
we would take the difference in log likelihoods 
of the models with and without the random 
effect and compare that directly to a 2

1χ  cutoff 
point.  The modification is to either calculate a 
p-value and then cut it in half, or to compare to a 
cutoff point with twice the nominal α level. 
 
Why? The intuition is that testing  
 
  H0:  02 =pσ  versus H0:  02 >pσ  
 
is a one-sided test.  The usual test is inherently 
two-sided and must be adjusted to reflect this 
fact. 
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3. Review:  Generalized Linear Models 
(GLMs) 

 
Example:  (from Finney, Statistical Method in 
Bioassay, 3rd Ed.).  Study of growth of Bacillus 
mesentericus spores grown in dilutions of a 
potato flour suspension. 
 
  Spore Growth    
Dilution 
(g/100ml) 

 Number of 
plates 

Number 
positive 

 Proportion 

1/128  5 0  0.0 
1/64  5 0  0.0 
1/32  5 2  0.4 
      
1/16  5 2  0.4 
1/8  5 3  0.6 
1/4  5 4  0.8 
      
1/2  5 5  1.0 
1  5 5  1.0 
2  5 5  1.0 
4  5 5  1.0 
 
Analysis? 
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Analysis of potato flour data 
 
Logistic Regression 
 
Notation: Let xi be the ln(dilution) for the ith 
series and let Yi be the number of positive 
plates. 
 
 
Distribution: Yi ~ indep. Binomial(5, p(xi)),  
 which has mean 5p(xi). 
 
 
Model:    ln(p(xi)/(1-p(xi)) = α + βxi
 
   S-shaped function of x 
 
   When x = -α/β, α + βx = 0, 
   and p(x) = 1/2. 
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Loglikelihood: Σiyi(α+βxi)-log(1+exp(α+βxi)) 
 
 
Maximum likelihood estimates:   
 $α  = 4.17 
 $β = 1.62 
 for ln(dilution) which achieves 50%  
 positive results:  -4.17/1.62 = -2.57 
  exp(-2.57) = 0.076 ≈ 1/13
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GLMs 
 
Dissect the modeling process into three distinct 
components: 
 
 1. What is the distribution of the data? 
 
 2. What aspect of the problem will be 
   modelled? 
 
 3. What are the predictors? 
 
 
In our example: 
 
 1. No. of successes in 5 trials => Binomial 
 
 2. log odds = ln(p/(1-p)) 
 
 3. ln(dilution) 
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GLMs 
 
 
 general case   our example 
 
Y ~ distribution   Y ~ Binomial 
 
µ = mean of Y   np = mean of Y 
 
g(µ) = Xβ    ln(p/(1-p)) = α + βx 
 
link function g(⋅)  logit link 
 
covariates Xβ   one predictor x 
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Example:  (from Snedecor and Cochran, Sec 
16.9, via McCullagh and Nelder, Generalized 
Linear Models).  Amount of ascorbic acid 
remaining in snap beans after 2,4,6, and 8 weeks 
of storage at 0, 10 or 20 oF (a 3×4 factorial with 
3 replicates per treatment combination).   
 
Sum of three ascorbic acid determinations for 
each of 12 treatments on snap beans 
 
    Weeks of storage 
Temp  2 4 6 8  Average 
0  45 47 46 46  46.0 
10  45 43 41 37  41.5 
20  34 28 21 16  24.8 
Ave  41.3 39.3 36.0 33.0  37.4 
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Here is a graph of the results. 

Plot of Total Ascorbic Acid Versus 
Week
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Analysis: McCullagh and Nelder assume that 
the variance in ascorbic acid determination is 
constant on the original scale and wish to fit a 
model with exponential decline through time.   
 
If Yij = average value at the ith temperature for 
week tj, then a possible model is  
 
 Yij ~ Normal(exp{α-βitj},σ2) 
 
This is a generalized linear model for a Normal 
distribution with constant variation and with log 
link.  The model has a common intercept and 
different slopes through time for each storage 
temperature. 
 
 
 
Another possibility:   log transform. 
 
 ln(Yij) ~ Normal(α-βitj,τ2) 
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Transform or Link? 
 
Example:  Average daily fat yield (kg/day) from 
milk from a single cow for each of 35 weeks. 
 
0.31 0.39 0.50 0.58 0.59 0.64 
0.68 0.66 0.67 0.70 0.72 0.68 
0.65 0.64 0.57 0.48 0.46 0.45 
0.31 0.33 0.36 0.30 0.26 0.34 
0.29 0.31 0.29 0.20 0.15 0.18 
0.11 0.07 0.06 0.01 0.01 
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A typical model: 
 
  Fat yield “=” αtβeγt   where t=week 
 
 
Transform: 
 

ln Yi ~ N(ln(α) + βln(ti) + γti, σ2) 
ln Yi = ln(α) + βln(ti) + γti + εi

E[ ln Yi ] = ln(α) + βln(ti) + γti

Yi = ii eet t
i

εγβα  

 
Link: 
 

Yi ~ N(αti
βeγti, τ2) 

E[ Yi ] = αti
βeγti

ln(E[ Yi ]) = ln(α) + βln(ti) + γti

 Yi = i
t

i
iet δα γβ +    ),0(~ 2τδ Ni
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Homoscedasticity:  The GLM analysis assumes 
a constant variance on the original scale.  The 
transformed analysis assumes a constant 
variance on the transformed scale. 
 
 
Trouble with transformations: With Poisson 
distributed data with zero counts, using a link 
function avoids the problems of a log 
transformation and zero counts. 
 
 
 
 
See Ruppert, Cressie, and Carroll (1989) for a 
discussion. 
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Estimation and Tests in GLMs 
 
Estimation of parameters by maximum 
likelihood or maximum quasi-likelihood.  
Maximize the log of the likelihood or quasi-
likelihood. 
 
Quasi-likelihood estimation:   
 
 Suppose Var(Y)= σ2V(µ) 
 

 Define U= Y
V( )2
− µ

σ µ
 

 

 and Q(µ;y)=∫ y t
t

dt
µ

σ
y

V( )2
−   

 
Note that  E[U] = 0 
   Var(U) = 1

σ µ2V( )
 

   -E[∂
∂ µ

U ] = 1
σ µ2V( )

 

 

which is similar to the properties of 
∂

∂ µ

ln fY
i . 
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For maximum likelihood we solve  
 

 µ∂
∂ Lln  = ∑i

fY
i

∂

∂ µ

ln
 = 0. 

 
For maximum quasi-likelihood we solve 
 
 µ∂

∂ ),( ii yQi µ∑  = 0. 
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Example:   
 
  σ µ µ2 V( )==1,  
 
  U=Y− µ

µ  

 
and Q y y( ; ) −µ

µ

µ µ

µ µ

=

=

∫

∫ ∫−

= − − −

y

y y

t
t dt

t dt dt

y y y

y 1

ln( ) ln( ) ( )y

 

     
So . ∑ ∑= − +i i yi nQ yi( , ) ln( )µ µ µ constant

 
For a Poisson,  
 
 ln L = ∑ ∑= − +i i yi nQ yi( , ) ln( )µ µ µ constant  
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Measure of model (lack of) fit:  deviance or 
Pearson chi-square statistic. 
 
Deviance = 2(max possible loglikelihood -  
  loglikelihood of fitted model) 
 
 So large values of deviance indicate a model  
 which fits poorly. 
 
Difference in Deviance for models 1 and 2 =  
 2(loglik model 2 - loglik model 1) 
 = likelihood ratio statistic 
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Example:  Potato flour dilutions (continued) 
 
Maximum achievable loglikelihood = -12.597 
 
Model 1:   logit(p(xi)) = α + βxi
 ML estimates: $α  = 4.1737 
     $β = 1.6226 
 loglikelihood:   -14.214 
 
 Deviance:  2(-12.597+14.214) 
     = 3.234 with 10-2 = 8 d.f. 
 
Model 2:   logit(p(xi)) = α  (no slope) 
 ML estimate: $α  = 0.4896 
  Note: 1/(1+exp(-0.4896))=.62=ave prop. 
 
 loglikelihood:   -33.203 
 
 Deviance:  2(-12.597+33.203) 
     = 41.212 with 10-1 = 9 d.f 
 
Difference in deviance  = 41.212 - 3.234 
      = 37.978 with 1 d.f. 
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Software 
 

Software for LMMs and GLMs is readily 
available, either through special purpose 
routines, e.g., for logistic regression, or general 
routines.  The package GLIM was the pioneer of 
software for GLMs, but other packages, e.g., 
SAS have caught up and now offer GLMs. 
 
In SAS, PROC MIXED fits linear mixed models 
with the assumption of normality and PROC 
GENMOD fits generalized linear models. 
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Analysis of the potato flour data using GENMOD: 
 
Program: 

data one; 
set work.potflour; 
lndil=log(dilution); 
run; 
proc genmod descending; 
model nopos/noplate=lndil/dist=bin; 
run; 

 

Output: 
                                      The GENMOD Procedure 
 
                                       Model Information 
 
            Data Set                          WORK.ONE 
            Distribution                      Binomial 
            Link Function                        Logit 
            Response Variable (Events)           Nopos    Nopos 
            Response Variable (Trials)         Noplate    Noplate 
            Observations Used                       10 
            Number Of Events                        31 
            Number Of Trials                        50 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                   8          3.2329          0.4041 
                  Scaled Deviance            8          3.2329          0.4041 
                  Pearson Chi-Square         8          2.7175          0.3397 
                  Scaled Pearson X2          8          2.7175          0.3397 
                  Log Likelihood                      -14.2136 
 
 
          Algorithm converged. 
 
 
                                Analysis Of Parameter Estimates 
 
                              Standard     Wald 95% Confidence       Chi- 
Parameter    DF    Estimate      Error           Limits            Square    Pr > ChiSq 
 
Intercept     1      4.1737      1.2522      1.7194      6.6280      11.11        0.0009 
lndil         1      1.6226      0.4571      0.7266      2.5185      12.60        0.0004 
Scale         0      1.0000      0.0000      1.0000      1.0000 
 
NOTE: The scale parameter was held fixed. 
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4. Introduction to Generalized Linear 
Mixed Models (GLMMs) 

 
Example:  Similar to Abu-Libdeh, Turnbull, 
Clark, (Biometrics, 1990).  Effect of selenium 
on prevention of skin cancer.  770 patients from 
seven clinics followed for four years. 
 
Recorded: 
 response: Number of new basal cell 
  epithelioma (BCE) sites found. 
 
 predictors: Selenium? (SEL), Sex (SEX), 
    Exposure to the sun (SUN). 
 
 [Also?]  Age, childhood farm exposure?,  
  smoker?, skin damage, no. of tumors 
  previously, clinic... 
 
  Q1:  Does selenium decrease the  
   number of BCEs? 
 
  Q2:  Are some patients more sensitive  
   to sun exposure?  If so, which ones? 
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Features from a modelling viewpoint 
 
 Nature of response:  count data 
 
 
 How to relate the response to the predictors? 
 
  λ=mean  
 
  ln(λ) = µ + β1SEX + β2SEL + γSUN 
 
  => Poisson regression 
 
Problems: 1.  
 
   2.  
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A Generalized Linear Mixed Model 
 
Let Yij be the response for patient i at visit j. 
 
 Yij = Number of new BCE sites 

Assume Yij ~ Poisson(λij), where λij is the mean 
number of new BCEs for patient i at visit j. 

ln(λij) = µi + β1SEX + β2SEL + γSUN 

 

 µi ~ Normal(µ,τµ) 

 assume a distribution for µi  

 

 Cov(ln(λij)), ln(λik)) = τµ 

 

A correlation is induced in the model between 
observations taken on the same patient.
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Other features 

1. Assume a distribution on γ: 
ln(λij) = µi + β1SEX + β2SEL + γiSUN 
From the previous model: 
γ = sun exposure effect (same across patients) 
γi = sun exposure effect for the ith patient 
γi ~ Normal(γ, τγ) 
• τγ > 0  <=> patients have different responses. 
• Extreme values of γi indicate sensitive 

individuals. 

2. Assume a distribution on β2: 
ln(λij) = µi + β1SEX + β2iSEL + γSUN 
β2i ~ Normal(β2, τβ) 
• If SEL is coded 1 for yes and 0 for no, then for 

the placebo group, the contribution of the 
β2iSEL term is zero, while for the treatment 
group it is β2i.  If τβ > 0, then the treatment 
group will have a larger variance. 
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Specifying GLMMs 

 
 1. What is the distribution of the data? 

 2. What aspects will be modelled? 

 3. What are the factors? 

* 4. Which factors will be assumed to have a 

   distribution? 
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GLMMs 
 
 
 general case   logit-normal 
 
Y ~ distribution   Y ~ Bernoulli 
 
µ = mean of Y   p = mean of Y 
 
g(µ) = Xβ + Zu   ln(p/(1-p)) = βx + ui
 
link function g(⋅)  logit link 
 
fixed factors Xβ  fixed factor x 
 
random factors Zu  random intercepts ui
 

u ~ distribution   ui ~ Normal(µu, τu) 

 71



Prediction in GLMMs 

 

In GLMMs we can adopt the same strategy as in 
LMMs: 

 

(1) Calculate ~u  = E[ u |Y] 

(2) Estimate any unknown parameters 

 

However, either of these steps may be 
problematic. 
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5. Modeling in GLMMs 
 

 
Example 1:  Progabide and seizures (Diggle, 
Liang and Zeger, 1994). 
 
Epileptics were randomly allocated to a placebo 
or an anti-seizure drug (Progabide) group.  The 
number of seizures was recorded for a baseline 
period of 8 weeks and during consecutive two-
week periods for four periods after beginning 
treatment.  Is the drug effective at reducing the 
number of seizures? 
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Example 2: Cartoons and learning disabilities 
 
This study concerned the comprehension of 
humor in two groups of adolescents (normal and 
learning disabled).   Each subject was exposed 
to 24 different cartoons (in three types).  There 
are two response variables  whether or not the 
child got the cartoon and whether or not s/he 
liked it.  The types of cartoon are: visual only, 
linguistic only, and both visual and linguistic. 
 
Two questions of interest are:  Is there a 
difference between normal and learning disabled 
children?  How consistent are the responses 
within cartoon type? 
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Example 3: Photosynthesis in corn relatives 
 
Two species of corn relatives (an annual and 
perennial) are being compared with respect to 
photosynthetic physiology.  Seeds from two 
populations of each species were collected and 
grown in the greenhouse.  The experimental 
design was a randomized complete block design 
with four blocks and three seeds from each 
population in each block (for a total of 12 seeds 
per block)  After 24 days, photosynthesis was 
recorded at nine different light levels from full 
sunlight to darkness on one individual from each 
population in each block (N=16).  Measure-
ments on the same 16 plants were repeated after 
48 days.  From these data, photosynthesis versus 
irradiance (PAR) response curves reflecting the 
change in photosynthetic rate with light level 
were derived. 
 
The traits of interest are the maximum photo-
synthetic rate,  dark respiration, the light comp-
ensation point, and the quantum yield.  The 
maximum photosynthetic rate measures the 
maximum amount of carbon dioxide the plants 
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are able to assimilate in full sunlight, the dark 
respiration indicates how much carbon dioxide 
they respire in the dark, the light compensation 
point is the light level at which photosynthesis 
overcomes respiration and carbon assimilation 
becomes positive, and quantum yield is the 
efficiency of carbon assimilation at low light 
levels, or the slope of the light response curve as 
it crosses the light compensation point. 
 
The main question of interest is to compare the 
two species with respect to their photosynthetic 
traits 
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Photosynthetic Rate Versus Light for Two Plants
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Example 4: Chestnut Leaf Blight 
 
The American chestnut tree was a predominant 
hardwood in the forests of the eastern United 
States, reaching 80-100 feet in height at maturity 
and providing timber and low-fat, high-protein 
nutrition for animals and humans in the form of 
chestnuts. In the early 1900's an imported fungal 
pathogen, which causes chestnut leaf blight, was 
introduced into the United States. The pathogen 
spread from infected trees in the New York City 
area and, by 1950, had killed over 3 billion trees 
and virtually eliminated the chestnut tree in the 
United States. Economic losses in both timber 
and nut production have been estimated in the 
hundreds of billions of dollars.  As well, there 
are ecological impacts of eliminating a dominant 
species. 
 
Attempts to restore this tree to the U.S. forests 
include  
• development of  blight resistant varieties 
• weakening of the fungus by infecting it with a 

virus which reduces the fungus' virulence.  
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I’ll describe the latter in more detail.  The basic 
idea is to release hypovirulent isolates of 
chestnut blight fungus and let the viruses infect 
the natural populations of the fungus, thereby 
allowing chestnuts trees to survive. 
 
Viruses spread between fungal individuals when 
they come in contact and fuse together. A major 
obstacle in spreading this virus and thus 
controlling the disease is that different isolates 
of the fungus cannot necessarily transfer the 
virus to one another.  
 
Michael Milgroom - Cornell Plant Pathology, 
and his colleague, Paolo Cortesi - from the 
University of Milan, have worked with six 
incompatibility genes, which may block the 
transmission of this virus between isolates of the 
fungus.  
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To estimate the effects of these genes, they have 
paired numerous isolates which differ on the 
first gene only, the second gene only, the first 
and the second gene, etc.  For each combination 
of isolates they have averaged about 30 attempts 
and record a binary response of whether or not 
the attempt succeeded in transmitting the virus. 
 
Questions of interest include whether pre-
identified genes actually do have an influence on 
transmission of the virus (and if so, to what 
degree), whether there are other, as yet 
unidentified, genes which might affect 
transmission, and whether transmission is 
symmetric. By symmetry of transmission we 
mean the following: suppose the infected fungus 
is type b at the locus for the first gene and the 
non-infected isolate (which we are trying to 
infect) is type B. The two isolates are the same 
at the other five loci. Is the probability of 
transmission the same as when using a type B to 
try to infect a type b? 
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Example 5: Combat vehicle design 
 
Army combat vehicles of the future will likely 
locate crew stations deep within the vehicle, to 
achieve lower silhouettes and increased crew 
protection against ballistic and directed energy 
threats.  This will require indirect vision systems 
such as liquid crystal displays.   
 
In “Indirect Vision Driving With Fixed Flat 
Panel Displays for Near-Unity, Wide, and 
Extended Fields of Camera View” (Smyth, 
Gombash, Burcham, ARL-TR-2511, 2001) eight 
drivers tested each of four vision systems:  
direct and three types of indirect (with three 
different fields of view -- unity, wide and 
extended).  Outcomes included speed to traverse 
the course, number of barrels knocked over and 
severe motion sickness (yes/no).   
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Example 6: Troponin and hemorrhage 
 
Heart damage in patients experiencing brain 
hemorrhage has historically been attributed to 
pre-existing conditions.  However, more recent 
evidence suggests that the hemorrhage itself can 
cause heart damage through the release of 
norepinephrine following the hemorrhage.  To 
study this, researchers at UCSF measured 
cardiac troponin levels, an enzyme released 
following heart damage, at up to three occasions 
after patients were admitted to the hospital for a 
specific type of brain hemorrhage (subarachnoid 
hemorrhage or SAH). 
 
The primary question was whether severity of 
injury from the hemorrhage was a predictor of 
troponin levels, as this would support the 
hypothesis that the SAH caused the cardiac 
injury. To make a more convincing argument in 
this observational study, we would like to show 
that severity of injury is an independent 
predictor, over and above other circulatory and 
clinical factors that would predispose the patient 
to higher troponin levels. 
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Possible clinical predictors included age, gender, 
history of heart failure, heart rate, whether the 
person was a smoker, diabetic or had high 
cholesterol levels.  Circulatory status was 
described using systolic blood pressure, history 
of hypertension (yes/no) and left ventricular 
ejection fraction a measure of heart function. 
The severity of neurological injury was graded 
using a subject's Hunt-Hess score on admission.  
This score is an ordered categorical variable 
ranging from 1 (little or no symptoms) to 5 
(severe symptoms such as deep coma). 
 
The study involved 175 subjects with at least 
one troponin measurement and between 1 and 3 
visits per subject. 
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6. Features of GLMMs 

 
6 a) Consequences of model assumptions 

 
What impact does this have on the distribution 
of Y?  Here are some calculations for the skin 
cancer example.   
 
E[Yij] = E[E[Yij| µi ]] 

= E[exp{µi + β1SEX + β2SEL + γSUN}] 
=exp{β1SEX+β2SEL+γSUN}E[exp{µi}] 

 
So logE[Yij] = β1SEX+β2SEL+γSUN+logMµ(1),  
where Mµ(t) is the moment generating function 
of µi.   
 
Var(Yij) = Var[E[Yij| µi ]]+E[Var(Yij| µi )] 

= Var(E[exp{µi+β1SEX+β2SEL+γSUN}]) 
   +exp{β1SEX+β2SEL+γSUN}E[exp{µi}] 
= Var(E[exp{µi+β1SEX+β2SEL+γSUN}]) 

+ E[E[Yij| µi ]] 
>E[Yij] 
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Marginal distribution for Probit models 
 
Yij ~ Bernoulli( Φ[ µ + ai + βxij] ) 
 
ai ~ Normal( 0, τa ). 
 
What is the marginal distribution? 
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Persistence of links 
 

Which other links “persist” like this? 
 
Log link: 
E[Yi] = E[E[Yi| u ]] 

= E[exp{ uzβx ii ′+′ }] 
= exp{ }E[exp{βxi′ uzi′ }] 

 
So logE[Yi] =  + logE[exp{βxi′ uzi′ }]  
(partial) 
 
Logit link and other links do not persist. 
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6 b) Marginal versus conditional models 
 
Illustration of difference of conditional and 
marginal approaches: 
 
Yij = 1 if the ith woman miscarries during her 
 jth pregnancy and is 0 otherwise. 
xij = j = pregnancy number. 
 
Model:   
 
 E[Yij|ui] = Φ(µ+βxij+ui) 
 
which gives 
 

 E[Yij] = Φ
µ β

σ

+ x
ij
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Interpretation of β? 
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Advantages/disadvantages of the approaches 
 
Because of computational problems with 
conditionally specified GLMMs there are many 
alternative methods (e.g., GEEs) for clustered 
data that focus on models for the marginal 
expectation of the response, E[ Yij ]. 
 
Marginal models have the following advantages: 

• Marginal models avoid the specification of 
the conditional structure, so misspecification 
of this portion of the model can be avoided.  
• For example, when the underlying random 
effects distribution is heteroscedastic, 
assuming it is homoscedastic and using a 
conditional approach can lead to biased 
estimators (Heagerty and Kurland, 2001) 
• When paired with a GEE approach to 
estimation, estimates of the marginal 
parameters are consistent, even under 
misspecification of the association structure. 
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Major drawbacks of the marginal approach 
include:   
 

• Often does not measure covariate effects of 
primary scientific interest.  
• In extreme circumstances, features of 
scientific interest present in every conditional 
model may not be present in the marginal 
model. 
• Marginal quantities can be calculated from a 
conditional model but the converse is not 
typically true. 
• Marginal modeling approaches are 
susceptible to Simpson's paradox and the 
Ecological Fallacy, potentially giving 
misleading results.   
• If the question of interest is based on the 
marginal distribution, a longitudinal design 
may not be the most appropriate. 

 
For a more detailed critique of marginal 
modeling see Lindsey and Lambert (1998). 
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7. Inference for GLMMs 
Estimation: Maximum likelihood (or variants) 
based on normality assumptions are relatively 
standard for linear mixed models.  For example, 
SAS PROC MIXED using ML or REML. 

 

For many GLMs, maximum likelihood is also 
standard, e.g., logistic regression or Poisson 
regression. 

 

What about GLMMs? 
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A simple GLMM 
 
A logit-normal model: 
 
 Yij | u ~ Bernoulli(pij),  
  i=1,2, ...n; j=1,2, ...q. 
  q clusters, n observations per cluster. 
 
 ln(pij/(1-pij)) = βxij + uj
  logit link
  one fixed and one random factor 
 
 uj ~ Normal(0,σ2) 
 
Scenario:  

Yij = 1 if blood pressure on day i on 
individual j decreases after using medicine 
at dose xij, 0 otherwise.   
 
q individuals, n days of measurement on 
each. 
 
uj is the individual specific propensity to 
increase or decrease blood pressure. 
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ML Estimation? 
 
Likelihood  = P{Y=y|β, σ2} 
   = ∫ P{Y=y|β, σ2, u}f(u)du 
   = ∫ P{Y=y|β, u}f(u)du 
   = ∫ Π

i, j
P Y y uij ij{ = | , }β  f(u)du 

   =  ∫
j

Π }u,|y=Y{P j
i

ijij βΠ f(uj)duj 

   = 
 exp{βΣiYijxij+Y+juj}Πi(1+exp{βxij+uj})

j
Π ∫ -1× 

   exp{-uj
2/2σ2}/(2πσ2)1/2duj. 

 
Cannot be evaluated in closed form but is not 
too hard to do numerically for this example.
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Brute force ML 
 

When the model has a single random effect or 
two nested random effects, it is relatively easy to 
evaluate the integrals in the likelihood.  For 
example, with a single random factor we have 
seen that the likelihood is a product of one-
dimensional integrals.   
 
One can then maximize the likelihood 
numerically to find ML estimates and to perform 
likelihood ratio tests.   
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Numerical evaluation of the likelihood 
 

When there is a single, normally distributed 
random effect, the likelihood can be written as a 
product of integrals of the form: 

 

  g x x dx( )exp{ }−∫−∞
+∞ 2  

 

These can be accurately evaluated using Gauss-
Hermite quadrature: 

 

 g x x dx w g xi i
i

( )exp{ } ( )−∫ ≈ ∑−∞
+∞ 2  

 

The weights, wi, and the evaluation points, xi, 
can be found in books on numerical integration, 
e.g., Abramowitz and Stegun (1964). 
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In general, however, the evaluation of the 
likelihood can be quite difficult.  For the general 
case,  
 
 
∫∫…∫ exp(ΣiYi( β+′xi ′zi u))Πi(1+exp( ′xi β+ ′zi u))-1dF(u). 
dim of u 
 

The dimension of u can get large quickly.  For 
example, in the leaf blight data, the dimension 
of the integral is larger than 250! 
 
 
 

What to do? 
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Other approaches to ML 
Simulation approximations 

 Monte Carlo EM 

 Monte Carlo Newton-Raphson 

 Stochastic approximation 

 Importance sampling 
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Inference using ML would proceed using the 
usual asymptotic approximations:   

ML estimates are asymptotically normal, with 
SEs coming from second derivatives of the log 
likelihood. 

Tests would be based on the likelihood ratio test, 
comparing -2loglikelihood for nested models. 
Best predicted values would be estimated by 
calculating E[random effect|data] and plugging 
in ML or REML estimates.  In general, the 
conditional expected values can’t be evaluated 
in closed form either. 
Tests on variances of random effects  The usual 
asymptotic theory breaks down when testing 
whether the variance components are equal to 
zero just as with LMMs.  For example, in testing 
whether a single variance component is zero, the 
large-sample distribution under Ho is a 50:50 
mixture of a χ1

2  and 0. 
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Summary:  ML 
+ Known large sample properties 

+ Likelihood ratio tests 

- Hard to compute for many GLMMs 

- Small sample performance needs to be 

 assessed for any particular model. 
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Conditional Inference 
 
A very different approach to random effects is to 
treat them as nuisance parameters and condition 
them away. 
 
Classic situation:  Matched pairs binary logistic 
regression. 
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Example:  Do cancer patients get more effective 
treatment in a major cancer center or a 
community hospital?  Can’t directly compare 
rates.  Patients are matched on treatment date, 
treatment, protocol and other factors.  The 
response is whether or not there is a large 
shrinkage in their tumor within 90 days.  
 
Data:  (1=shrinkage, 0=no shrinkage). 
 
 Pair  Cancer 

Center 
Community 
Hospital 

 1  1 1 
 2  1 0 
 3  1 1 
 .    
 .    
 .    
 936  0 1 
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A model: 
 
Yij = 1 for shrinkage and 0 otherwise.  i indexes  

pairs (i=1,2,…N) and j indexes treatment 
(with j being 1 for a comm hosp. and 2 for a 
cancer center). 

 
Yij ~ Bernoulli(pij) 

 
logit(pij) = µi + βxij,  

 
where xij = 0 for j=1 and 1 for j=2 (cancer center 
or “treatment” indicator). 
 
µi treated as fixed parameters 
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Maximum likelihood gives  
 

10

01log2ˆ
N

N
=β , 

 
where N10 is the number of pairs with Yi1=1 and 
Yi2=0 and N01 is the number of pairs with Yi1=0 
and Yi2=1.   
 
This is perhaps easiest to visualize in a 2 × 2 
format: 
 
   Treatment 
 Control  Failure Success
 Failure  N00 N01 
 Success  N10 N11 
 
The ML estimator is twice the sensible answer. 
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Remedy?  A commonly used approach is that of 
conditional likelihood. 
 
Basic idea:  Derive the sufficient statistics for 
the µi and work with the conditional distribution 
given those sufficient statistics. 
 
From the form of the density it is clear that the 
sufficient statistic is (S1, S2, …, SN, T) = (Y1•, 
Y2•, …,YN•, Y•2).  Since the distribution is 
discrete, to find the distribution of S we merely 
sum over the appropriate values of Y: 
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where C(s,t) represents the number of 
combinations of values of y that satisfy the 
constraints. 
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From this it is straightforward to get the 
marginal distribution of S: 
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and the conditional distribution of T given S: 
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None of the µi remain, as expected.  This 
conditional likelihood can thus be used to 
estimate β or to form tests or confidence 
intervals. 
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For the matched pairs situation the 
combinatorial coefficient is straightforward to 
evaluate.   
 
Conditional on Si = 0 we know Yi1=0 and Yi2=0. 
Conditional on Si = 2 we know Yi1=1 and Yi2=1. 
 
The only remaining randomness involves those 
pairs for which Si = 1. 
 
Using r = t – N00 – N11 = number of successes in 
the discordant pairs, is equivalent to using t.   
 
Then it isn’t hard to show that  
 

C(s,t) = number of ways the successes in the 
N10 and N10 pairs can be distributed 
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Illustration:  The conditional approach discards 
the 132+501 = 633 responses which are 
concordant and bases the analysis on the 303 
remaining.   
 
 p-value = 2×Pr{X≤146} 
 
 where X ~ Binomial(303,1/2). 
 
So p-value = 2(0.283) = 0.566. 
 
 
Drawbacks to the conditional approach 
 
Recover information from concordant pairs? 
 
Inferences about random effects?   
 
Between versus within “subjects.”? 
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Generalized Estimating Equations 

(GEEs) 
GEEs are a computationally less demanding 
method than ML estimation.  They are 
applicable (mainly) to longitudinal data.   

 

Longitudinal data = data collected on a subject 
on two or more occasions.   

 

Number of occasions is small compared to the 
number of subjects. 
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Longitudinal Data 
Begin by considering longitudinal data with 
linear models under normality. 

 

(1) Separate effects that are constant across 
subjects (β) from those which vary across 
subjects (ui). 

(2) For the ith individual write a linear model 
conditional on the value of ui: 

  Yi = Xiβ + Ziui + εi 

   εi ~ N(0,Ri) 

(3) Incorporate subject-to-subject variability by 
assigning a distribution to ui: 

   ui ~ N(0,D). 

 

Result:   Yi ~ indep N(Xiβ, ZiDZi
′ + Ri) 
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Longitudinal Data 
Example:  (Diggle, Liang and Zeger, 1994).  
Milk was collected from 79 cows on one of 
three diets:  barley, lupins, and a mixture of 
both.  Protein content of the milk was recorded 
weekly for 19 weeks after the earliest calving. 

 

Constant effects:  diet, time 

Effects that vary across animals:  intercepts 

 

Model for the ith cow on diet j, at time t 

 Yijt = µ + ci(j) + αj + f(t) + eijt 

 eij ~ N(0,Ri(j)) 

 Ri(j):  cov(eijt, eijt′) = 2eσ exp(-φ|t-t′|) 

 ci(j) ~ N(0,σ c2 ) 
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(More generally for awhile): 

 

 Y = Xβ + Zu + e 

   u ~ N(O, D) 

   e ~ N(O, R) 

So  Y ~ N(Xβ, V=ZDZ′ + R). 

What about using $βOLS  = (X′X)-1X′Y ? 
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$βOLS  is unbiased. 

 E[ $βOLS ]  = (X′X)-1X′E[Y] 

    = (X′X)-1X′Xβ = β 
$βOLS  is usually fairly efficient. 

 Var( $βOLS ) = (X′X)-1X′VX(X′X)-1

( As compared to Var( $βGLS ) = (X′VX)-1  ) 

In fact, with balanced designs, $βOLS  = $βGLS . 

So why not just use $βOLS  and standard software? 
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Var( $βOLS ) = (X′X)-1X′VX(X′X)-1

but, using standard software,  

V r($a $βOLS ) = (X′X)-1 $σ 2 , which will often be 
very wrong.  That is, the OLS estimate isn’t so 
bad, but the usual variance estimate is way off. 
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Going back to the longitudinal data setting the 
basic idea is, with Yi ~ independently, to use the 
“replication” across subjects to get an empirical 
estimate of the variance.  For the longitudinal 
data setting,  

 
$βOLS  = ( ) (Σ )Σi ii i i i′ ′−X X X Y1  

Var( $βOLS ) = ( ) ( )( )Σ Σ Σi i ii i i i i i i′ ′ ′− −X X X V X X X1 1 

which can be estimated by 

( ) ( ( $ )( $ ) )( )Σ Σ Σi i ii i i i i i i i i i′ ′ ′ ′− − − −X X X Y Y X X X1 1µ µ  
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For the milk protein data from Diggle, Liang 
and Zeger (1994), if all the animals had all 19 
weeks of data we could just get empirical 
estimates from the multivariate observations. 

 

With some missing data the previous formula 
can still be used. 
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Non-normal data? 
GEEs work most easily for models specified on 
the unconditional distribution.  In contrast, we 
have been specifying models which are 
conditional on the random effects, u.   
 
For example, for binary data, we could specify: 
  E[Yij] = pij 
  logit(pij) = Xiβ. 
 
Obtain  by solving the GEE: $β
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where W.Var indicates a “working” or assumed 
covariance structure, possibly dependent on 
unknown parameters. 
 
This has properties similar to the estimating 
equations for the LMM: 
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A big advantage of the GEE approach is the 
ability to use a “robust” variance estimate. 
 
In such a case the inferences about the mean 
structure are asymptotically valid, even when 
the working variance is incorrect. 
 

This offers a useful tool for inference or, at least, 
model checking. 
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GEEs are most naturally adapted to marginal 
models, not the conditional random effects 
models of GLMMs.  But see Zeger, Liang and 
Albert (1988) see for some results in this 
direction.   
 
In addition to the drawbacks above relating to 
marginal models, the GEE approach in 
particular also has the following drawbacks 
compared to GLMMs: 
 

• GEEs by themselves do not help to separate 
out different sources of variation. 
• GEEs are not directly a technology for best 
prediction of random effects.  But see 
Waclawiw and Liang (1993) and Heagerty 
(1999).   
• GEEs are not the best technique for other-
than-longitudinal (but correlated) data, either 
crossed or nested random factors. 
• GEEs may be inefficient when the goal is 
estimation of the variance covariance 
structure. 
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Summary:  GEEs 
 

Mainly for longitudinal data. 
 
Easiest for marginal models, not random effects 
models:  GEEs by themselves do not help to 
separate out sources of variation that may be 
present and do not provide predicted values. 
 
Robust standard errors: 
 + Robust 
 + Often relatively efficient 
 - Estimates many parameters 
 - Does not work well when the number of  
  time points is large compared to the  
  number of subjects 
 - Does not work well with missing data 
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Penalized Quasi-likelihood (PQL) 
 Y ~ exponential family with mean µ 

 g(µ) = Xβ + Zu  u ~ N(0,D) 

 g(y) ≈ g(µ) + (y-µ)g′(µ) ≡ z 

  = Xβ + Zu + (y-µ)g′(µ) 

  = Xβ + Zu + εg′(µ) 

Idea:  treat z as a LMM with  

 Var(z) = ZDZ′ + R(g′(µ))2

Use the Mixed Model Equations iteratively to 
find both 

  and the BLUP of u $β

Schall (1991) also suggests ways to get 
approximate SEs.   
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Summary:  PQL 
 + Computationally fairly easy 

 + Works well when the data are  

  approximately normal to start with. 

 - Does not work well for highly non-normal 

  data (e.g., binary). 

 - Only for u ~ Normal. 

 

 

Why PQL?  See Breslow and Clayton (1993). 
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Other Approaches 
1. Models for specific situations. 
 Beta-binomial (Crowder, 1978) 
 Poisson-gamma (Abu-Libdeh, et al, 1990) 
 Other (Conaway, 1990) 
 
3. Other marginal models  
 Liang, Zeger and Qaqish (1992) 
 
4. BLUP estimators 
 Engel and Keen (1994) 
 McGilchrist (1994,1995) 
 
5. Maximum hierarchical likelihood.   
 Lee and Nelder (1996) 
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More on the beta-binomial 
 
Scenario:  A potentially toxic chemical is 
administered to pregnant rats in the treatment 
group(s).  There is also a control group.  The 
response we record is the presence or absence of 
a birth defect in animal k from litter j in group i. 
 

Yijk | pij ~ indep. Bernoulli(pij)  
 
  pij ~ indep. Beta(αi , βi) 
 
Hence Yijk ~ Bernoulli(µi), where µi is given by 
E[ pij ] = αi/(αi + βi).   
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The joint density of Y is given by 
 

fY = Πi,j 
ij

fY , 

where Yij = (Yij1, Yij2, …, 
ijijnY )′.  Dropping the i 

and j subscripts, 
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Therefore, the likelihood is given by 
 

L=
),(

),(

ii

ijjiiji
ij B

YinYB

βα

βα ⋅⋅ −++
∏ . 

 
 
Extensions?  E.g., different doses of the toxic 
chemical? 

Software 
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Maximum likelihood 
Linear Normal Mixed Models:  SAS PROC MIXED or 
SPSS. 
 
Linear Normal Nested Models: MlwiN 
(http://multilevel.ioe.ac.uk) and HLM 
(http://www.ssicentral.com/hlm/hlm.htm) fit hierarchical 
models, using maximum likelihood for normal data and 
penalized quasi-likelihood for binary and binomial data 
(see below). 
 
Logit/Probit normal, Ordinal logit:  MIXOR program runs 
on PCs available free from Don Hedeker via the WWW at 
http://www.uic.edu/~hedeker/mix.html. 
 
Nonlinear normal mixed models: S-Plus functions free 
from Pinheiro, Bates and Lindstrom at: 
http://www.stat.wisc.edu/p/stat/ftp/src/NLME/ 
 
SAS NLMIXED (new in Version 7.0) can handle random 
effects for the longitudinal data situation (i.e., data are in 
clusters).   
 
GEE software 
 
SAS GENMOD allows GEE estimation through its 
REPEATED statement.  SUDAAN and STATA allow GEE 
estimation for a variety of statistical methods including 
multinomial logistic regression.
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PQL software 
GLIMMIX macros available from SAS at 
http://ftp.sas.com/techsup/download/stat/glmm800.html 
 
For nested models MlwiN and HLN use PQL and 
improvements of PQL.   
 
Bayes software:   
 
BUGS fits a wide variety of Bayesian models and allows 
the incorporation of distributions for the parameters.  A 
description of BUGS (and it can be downloaded from) 
http://www.mrc-bsu.cam.ac.uk/bugs/ 
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Case Studies 
 
Case study 1:  Breeding Bird Survey.  (James, et 
al, 1996).  Counts of number of birds “sighted” 
has been made each June at thousands of 
locations across the U.S. and Canada.  Many of 
the locations have been surveyed since the mid 
1960s.  Responses are summarized by 
estimating whether the trend in population size 
is positive within a stratum.   

response:  increase (yes/no) for species i in 
stratum j. 

distribution:  Bernoulli  link:  probit 

predictors:  species (fixed), stratum (random). 

 
Question:  Is destruction of overwintering 
habitat causing the decline of neo-tropical 
migrant bird populations on a continent-wide 
basis? 
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Breeding Bird Survey (cont) 

Model:  Yij =  (1/0) increase for species i in   
  stratum j? (Probit-normal) 

 Yij ~ Bernoulli(pij) i=1,...,26; j=1,...,37 

 pij = Φ(µi + sj) ,  sj ~ N(0,σ s
2 ) 

Data layout 

     Stratum 

Species  1 ... 10 11 12 13 ... 37 

   1    0   0   

   2          

   3          

   4  0        

   .      0 0   

  26     1 1 1 0 0 

blank = species not present (about 2/3) 

 1 = increase 

 0 = decrease 
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ML Estimates:  

 $µ1 =-0.66, $µ2=0.26,..., $µ26=-1.28 

 $σ s
2  = 0.45   

 Interpretations:  

  Φ(0.26) = 0.60 

  $σ s
2 /( $σ s

2 +1) = 0.31 

Test of σ s
2  = 0: 

 diff in -2loglik = 11.88 

 compare to a 1
2 1

2χ  

Estimated best predicted values: E[sj|Y] 

 e.g., E[s23|Y] = -1.10 

 Φ(-1.10) = 0.14 
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Case Study 2:  Progabide and Seizures (Diggle, 
Liang and Zeger, 1994).  Epileptics were 
randomly allocated to a placebo group or an 
drug (Progabide) group.  The number of seizures 
was recorded for a baseline period of 8 weeks 
and during consecutive two-week periods for 4 
periods after beginning treatment.  Is the drug 
effective at reducing the number of seizures? 

Number of seizures 
Patient  Base

-line 
Period 
1 

Period 
2 

Period 
3 

Period 
4 

 Trt 

1  11 5 3 3 3  0 

2  11 3 5 3 3  0 

3  6 2 4 0 5  0 

4  8 4 4 1 4  0 

.  . . . . .  . 

57  13 0 0 0 0  1 

58  12 1 4 3 2  1 
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response:  number of seizures for individual i at  

 time j=1,2,3,4,5 

distribution:  Poisson 

predictors:  period, treatment (both fixed), 
individual, individual × treatment (?) (both 
random). 

 

The baseline period is 8 weeks long, whereas the 
observation periods are only 2 weeks long. 

 

Question:  Does Progabide reduce the frequency 
of seizures? 
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Model:   

Yij = count for subject i at time j 

tij = time (in weeks) for the observation period 
for subject i at time j (either 8 or 2 weeks). 

 Yij|λij ~ indep. Poisson(λij) 

 ln(λij) = µ + si + β1TIMEij + β2TRTij + 

    β3TIMEij × TRTi + ln(tij) 

 si ~ N(0, 2sσ ) 

TIMEij = 1 if the observation is post baseline 
and 0 otherwise. 

 

 Mainly interested in β3. 

 How to estimate this model? 
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SAS Programs for the Progabide data 
 
data thall; 
input id y visit trt bline age; 
cards; 
104 5 1 0 11 31 
104 3 2 0 11 31 
104 3 3 0 11 31 
103 0 4 1 19 20 
... 
232 0 4 1 13 36 
236 1 1 1 12 37 
236 4 2 1 12 37 
236 3 3 1 12 37 
236 2 4 1 12 37 
; 
 
data new; 
   set thall (drop=age); 
   output; 
   if visit=1 then do; y=bline; visit=0; output; end; 
   run; 
 
proc sort; 
   by id visit; 
   run; 
 
data new3; 
   set new; 
   if id ne 207; 
   if visit=0 then do; time=0; ltime=log(8); end; 
   else do; time=1; ltime=log(2); end; 
   run; 
 
proc nlmixed data=new3 qpoints=20; 
   parms  mu=1 b1=0 b2=0 b3=0 sig1=0.1; 
   eta=mu+b1*time+b2*trt+b3*time*trt+u1+ltime; 
   lam=exp(eta); 
   model y~Poisson(lam); 
   random u1~Normal(0,sig1) subject=id; 
   run; 
 
proc nlmixed data=new3 qpoints=20; 
   parms  mu=1 b1=0 b2=0 b3=0 sig1=0.1 cov=0.05 sig2=0.1; 
   eta=mu+b1*time+b2*trt+b3*time*trt+u1+u2*time+ltime; 
   lam=exp(eta); 
   model y~Poisson(lam); 
   random u1 u2~Normal([0, 0],[sig1, cov, sig2]) subject=id; 
   run; 
 
proc genmod data=new3; 
   class id; 
   model y= time trt time*trt / d=poisson offset=ltime; 
   repeated subject=id / corrw covb type=exch; 
   run; 

SAS output 
 
                                     The NLMIXED Procedure 
 
                                         Specifications 
 
                Data Set                                    WORK.NEW3 
                Dependent Variable                          y 
                Distribution for Dependent Variable         Poisson 
                Random Effects                              u1 
                Distribution for Random Effects             Normal 
                Subject Variable                            id 
                Optimization Technique                      Dual Quasi-Newton 
                Estimation Method                           Adaptive Gaussian 
                                                            Quadrature 
 
 
                                           Dimensions 
 
                            Observations Used                    290 
                            Observations Not Used                  0 
                            Total Observations                   290 
                            Subjects                              58 
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                            Max Obs Per Subject                    5 
                            Parameters                             5 
                            Quadrature Points                     20 
 
 
                                           Parameters 
 
                   mu          b1          b2          b3        sig1    NegLogLike 
 
                    1           0           0           0         0.1    1015.04066 
 
 
                                           Iterations 
 
                Iter     Calls    NegLogLike        Diff     MaxGrad       Slope 
 
                   1         3      955.8817    59.15896    57.97191    -7021.37 
                   2         5    952.178211     3.70349    55.02552     -34.165 
                   3         6    948.800206    3.378005    13.73927    -29.1799 
                   4         7    948.525761    0.274445    2.674937    -0.54631 
                   5         9    948.511099    0.014661    1.814969    -0.00427 
                   6        10    948.486503    0.024596    0.610316    -0.02313 
                   7        12    948.483431    0.003072    0.070732    -0.00642 
                   8        14    948.483277    0.000154    0.052537    -0.00008 
                   9        16    948.483246    0.000031    0.002884    -0.00005 
                  10        18    948.483246    3.612E-8    0.000061    -7.42E-8 
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                                     The NLMIXED Procedure 
 
                          NOTE: GCONV convergence criterion satisfied. 
 
 
                                      Fitting Information 
 
                            -2 Log Likelihood                 1897.0 
                            AIC (smaller is better)           1907.0 
                            BIC (smaller is better)           1917.3 
                            Log Likelihood                    -948.5 
                            AIC (larger is better)            -953.5 
                            BIC (larger is better)            -958.6 
 
 
                                      Parameter Estimates 
 
                      Standard          t 
Parameter  Estimate     Error    DF   Value  Pr > |t|  Alpha    Lower    Upper  Gradient 
 
  mu           1.0359    0.1415    57    7.32   <.0001   0.05   0.7526   1.3192  0.000061 
  b1           0.1108   0.04689    57    2.36   0.0216   0.05   0.01691  0.2047 -0.00002 
  b2         -0.01049    0.1968    57   -0.05   0.9577   0.05  -0.4047   0.3837  0.000044 
  b3          -0.3016   0.06975    57   -4.32   <.0001   0.05  -0.4413  -0.1619  0.000041 
  sig1         0.5167    0.1013    57    5.10   <.0001   0.05   0.3139   0.7196 -0.00001 
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                                     The NLMIXED Procedure 
 
                                         Specifications 
 
                Data Set                                    WORK.NEW3 
                Dependent Variable                          y 
                Distribution for Dependent Variable         Poisson 
                Random Effects                              u1 u2 
                Distribution for Random Effects             Normal 
                Subject Variable                            id 
                Optimization Technique                      Dual Quasi-Newton 
                Estimation Method                           Adaptive Gaussian 
                                                            Quadrature 
 
 
                                           Dimensions 
 
                            Observations Used                    290 
                            Observations Not Used                  0 
                            Total Observations                   290 
                            Subjects                              58 
                            Max Obs Per Subject                    5 
                            Parameters                             7 
                            Quadrature Points                     20 
 
 
                                           Parameters 
 
  mu          b1          b2          b3        sig1         cov        sig2    NegLogLike 
 
   1           0           0           0         0.1        0.05         0.1    952.625769 
 
 
                                           Iterations 
 
                Iter     Calls    NegLogLike        Diff     MaxGrad       Slope 
 
                   1         3    912.039756    40.58601    264.2311    -7563.74 
                   2         4    898.775177    13.26458    18.03295    -979.652 
                   3         5    896.722486    2.052691    13.29285    -4.27047 
                   4         7    895.336636     1.38585    12.48232    -1.57163 
                   5         8    894.589275    0.747361    10.88548    -2.00732 
                   6         9    894.365239    0.224036    12.92942    -0.83035 
                   7        11    893.837266    0.527973    8.323319     -1.0606 
                   8        13    893.468515     0.36875    10.17836    -0.16147 
                   9        15    893.346311    0.122204    10.68736    -0.15449 
                  10        16    893.139226    0.207085    5.499622    -0.11613 
                  11        18    893.053203    0.086023    0.895064    -0.18358 
                  12        20    893.046781    0.006421    0.235226    -0.01462 
                  13        22    893.045961    0.000821     0.13539    -0.00128 
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                                     The NLMIXED Procedure 
 
                                           Iterations 
 
                Iter     Calls    NegLogLike        Diff     MaxGrad       Slope 
 
                  14        24    893.045484    0.000477    0.121494    -0.00047 
                  15        26    893.045332    0.000152    0.029424    -0.00026 
                  16        28     893.04533    1.603E-6     0.00084    -3.17E-6 
 
 
                          NOTE: GCONV convergence criterion satisfied. 
 
 
                                      Fitting Information 
 
                            -2 Log Likelihood                 1786.1 
                            AIC (smaller is better)           1800.1 
                            BIC (smaller is better)           1814.5 
                            Log Likelihood                    -893.0 
                            AIC (larger is better)            -900.0 
                            BIC (larger is better)            -907.3 
 
 
                                      Parameter Estimates 
 
                       Standard             t 
Parameter  Estimate     Error    DF   Value  Pr > |t|  Alpha    Lower    Upper  Gradient 
 
  mu           1.0696    0.1343    56    7.96   <.0001   0.05   0.8005   1.3387  -0.0006 
  b1         0.005870    0.1070    56    0.05   0.9564   0.05  -0.2085   0.2202   0.000209 
  b2         -0.00970    0.1860    56   -0.05   0.9586   0.05  -0.3823   0.3629  -0.0005 
  b3          -0.3471    0.1489    56   -2.33   0.0233   0.05  -0.6453  -0.04888 -0.00024 
  sig1         0.4528   0.09354    56    4.84   <.0001   0.05   0.2654   0.6402   0.000059 
  cov         0.01725   0.05287    56    0.33   0.7455   0.05  -0.08867  0.1232  -0.00084 
  sig2         0.2161   0.05864    56    3.69   0.0005   0.05   0.09862  0.3336  -0.00047 
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                                      The GENMOD Procedure 
 
                                       Model Information 
 
                                Data Set              WORK.NEW3 
                                Distribution            Poisson 
                                Link Function               Log 
                                Dependent Variable            y 
                                Offset Variable           ltime 
                                Observations Used           290 
 
 
                                    Class Level Information 
 
            Class      Levels    Values 
 
            id             58    101 102 103 104 106 107 108 110 111 112 113 114 
                                 116 117 118 121 122 123 124 126 128 129 130 135 
                                 137 139 141 143 145 147 201 202 203 204 205 206 
                                 208 209 210 211 213 214 215 217 218 219 220 221 
                                 222 225 226 227 228 230 232 234 236 238 
 
 
                                     Parameter Information 
 
                                   Parameter       Effect 
 
                                   Prm1            Intercept 
                                   Prm2            time 
                                   Prm3            trt 
                                   Prm4            time*trt 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                 286       2413.0245          8.4371 
                  Scaled Deviance          286       2413.0245          8.4371 
                  Pearson Chi-Square       286       3015.1555         10.5425 
                  Scaled Pearson X2        286       3015.1555         10.5425 
                  Log Likelihood                     5631.7547 
 
 
          Algorithm converged. 
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                                      The GENMOD Procedure 
 
                            Analysis Of Initial Parameter Estimates 
 
                                                Wald 95% Confidence 
                                   Standard           Limits              Chi- 
 Parameter    DF    Estimate       Error       Lower       Upper     Square    Pr > ChiSq 
 
 Intercept     1      1.3476      0.0341      1.2809      1.4144    1565.44        <.0001 
 time          1      0.1108      0.0469      0.0189      0.2027       5.58        0.0181 
 trt           1     -0.1080      0.0486     -0.2034     -0.0127       4.93        0.0264 
 time*trt      1     -0.3016      0.0697     -0.4383     -0.1649      18.70        <.0001 
 Scale         0      1.0000      0.0000      1.0000      1.0000 
 
NOTE: The scale parameter was held fixed. 
 
 
                                     GEE Model Information 
 
                         Correlation Structure             Exchangeable 
                         Subject Effect                  id (58 levels) 
                         Number of Clusters                          58 
                         Correlation Matrix Dimension                 5 
                         Maximum Cluster Size                         5 
                         Minimum Cluster Size                         5 
 
 
                                Covariance Matrix (Model-Based) 
 
                               Prm1           Prm2           Prm3           Prm4 
 
                Prm1        0.01223       0.001520       -0.01223      -0.001520 
                Prm2       0.001520        0.01519      -0.001520       -0.01519 
                Prm3       -0.01223      -0.001520        0.02495       0.005427 
                Prm4      -0.001520       -0.01519       0.005427        0.03748 
 
 
                                 Covariance Matrix (Empirical) 
 
                               Prm1           Prm2           Prm3           Prm4 
 
                Prm1        0.02476      -0.001152       -0.02476       0.001152 
                Prm2      -0.001152        0.01348       0.001152       -0.01348 
                Prm3       -0.02476       0.001152        0.03751      -0.002999 
                Prm4       0.001152       -0.01348      -0.002999        0.02931 
 
 
          Algorithm converged. 
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                                      The GENMOD Procedure 
 
                                  Working Correlation Matrix 
 
                          Col1         Col2         Col3         Col4         Col5 
 
             Row1       1.0000       0.5941       0.5941       0.5941       0.5941 
             Row2       0.5941       1.0000       0.5941       0.5941       0.5941 
             Row3       0.5941       0.5941       1.0000       0.5941       0.5941 
             Row4       0.5941       0.5941       0.5941       1.0000       0.5941 
             Row5       0.5941       0.5941       0.5941       0.5941       1.0000 
 
 
                              Analysis Of GEE Parameter Estimates 
                               Empirical Standard Error Estimates 
 
                                               95% Confidence 
                                    Standard       Limits 
                 Parameter Estimate    Error    Lower    Upper       Z Pr > |Z| 
 
                 Intercept   1.3476   0.1574   1.0392   1.6560    8.56   <.0001 
                 time        0.1108   0.1161  -0.1168   0.3383    0.95   0.3399 
                 trt        -0.1080   0.1937  -0.4876   0.2716   -0.56   0.5770 
                 time*trt   -0.3016   0.1712  -0.6371   0.0339   -1.76   0.0781 
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Parameter estimates and SEs (in parenthesis) for 
the Progabide data. 

   Estimation Method 
Variable  MLE1 PQL2 GEE3

Intercept  1.03 1.00 1.35 

  (0.14) (0.14) (0.16) 

TRT  -0.01 -0.009 -0.11 

  (0.20) (0.19) (0.19) 

TIME  0.11 0.11 0.11 

  (0.05) (0.05) (0.12) 

TIME×TRT  -0.30 -0.30 -0.30 

  (0.07) (0.07) (0.17) 

     
2sσ   2ˆsσ =0.52 2ˆsσ =0.53 ρ̂ =0.60 

  (0.10) (0.10)  
1SAS Proc NLMIXED 
2From Diggle, Liang, and Zeger (1994, p.188) 
3SAS Proc GENMOD 
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Case Study 3:  Potomac River Fever in Horses:  
(Atwill, et al, 1996) Potomac River Fever 
(equine monocytic ehrlichiosis) is a blood-borne 
rickettsial disease whose transmission 
mechanism is unknown.  Both arthropod (e.g. 
blackfly) and direct oral transmission have been 
suspected but not verified.  Identification of risk 
factors of horses in New York State might give 
clues to the spread of this disease and help with 
reducing its frequency.   

511 farms were studied, each with several social 
groups of horses, for a total of 2,587 horses. 

response:  seropositive (yes/no) response for 
horse k in social group j at farm i. 

distribution:  Bernoulli  link:  logit 

predictors:  Frequency stall cleaned, Frequency 
fly spray applied, Breed, Sex, ...(fixed), Farm 
and Social group (farm) (random). 

 

Questions:  Transmission mechanism of 
Potomac River Fever? 
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Model:  Yijk =  infection for horse k in social  
 group j on farm i. 

 Yijk ~ Bernoulli(pijk) 

 logit(pijk) = µ + sj(i)+ fi + fixed effects, 

  sj(i) ~ N(0,σ group farm( )
2 ) 

  fi ~ N(0,σ farm
2 ) 

 
Analysis:  Focus on the random factors.  The 
estimated variances of the random effects were: 
 
  $σ farm

2  = 1.26 
  $

( )σ group farm
2  = 0 

 
So the difference in loglikelihood for testing 
σ group farm(

2
)=0 is zero and hence not statistically 

significant when compared to a 1
2 1

2χ . 
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Implications:  There is a strong correlation 
among horses within a farm on the logit scale 
(0.32= $σ farm

2 /( $σ farm
2 +σ logistic

2 )), but no correlation 
within social groups.  This suggests the disease 
is not transmitted directly from horse to horse, 
but instead is related to environmental or 
management factors operating at a farm scale. 
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Case study 4:  Chestnut Leaf Blight.  Recall the 
situation: Viruses spread between fungal 
individuals when they come in contact and fuse 
together. A major obstacle in spreading this 
virus and thus controlling the disease is that 
different isolates of the fungus cannot 
necessarily transfer the virus to one another.  
 
To estimate the effects of these genes, they have 
paired numerous isolates which differ on the 
first gene only, the second gene only, the first 
and the second gene, etc.  For each combination 
of isolates they have averaged about 30 attempts 
and record a binary response of whether or not 
the attempt succeeded in transmitting the virus. 
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Questions of interest include whether pre-
identified genes actually do have an influence on 
transmission of the virus (and if so, to what 
degree), whether there are other, as yet 
unidentified, genes which might affect 
transmission, and whether transmission is 
symmetric. By symmetry of transmission we 
mean the following: suppose the infected fungus 
is type b at the locus for the first gene and the 
non-infected isolate (which we are trying to 
infect) is type B. The two isolates are the same 
at the other five loci. Is the probability of 
transmission the same as when using a type B to 
try to infect a type b? 
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Model: 
 
Yi = 1 if virus is transmitted, 0 otherwise 
Yi ~ indep. Bernoulli(pi) 
 

pi = )( ijjjijjj ASYMCH γβµ Σ+Σ+Φ , 
 
where MCHij = 1 if there is a mismatch at locus j 
for pairing i and 0 otherwise, and ASYij = ½ if 
there is a mismatch at locus j in pairing i with a 
b donor, -½ if there is a mismatch at locus j 
pairing i with a B donor and 0 if there is no 
mismatch.   
 

=jβ  effect of a mismatch on gene j. 
=jγ  asymmetry effect. 

    = difference between a mismatch with a donor 
type b and type B. 
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Question:  Is there asymmetric transmission? 
 
maximized log likelihood of the model: 

log l = -955.303 
with 13 parameters 

 
maximized log likelihood of the model with all 
the iγ  set equal to zero: 

log l = -1116.639 
 with 7 parameters 
 
Likelihood ratio test: 
 
Difference is 1116.639 - 955.303 = 161.336 
p-value = P{ ≥2

6χ  2*161.336} ≈ 0 
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Threshold model 
 
A common model in genetics for describing the 
presence or absence of a trait is the threshold 
model. This arises from assuming that a large 
number of genes each have a small and additive 
effect and when the cumulative effect exceeds a 
threshold of zero the trait is present in an 
individual.  
 
Y =1 if trait is present, and 0 otherwise.   
βx′  = either genetic or non-genetic fixed effects. 

ε = the genetic effect not captured in . βx′
 
Appealing to the central limit theorem gives the 
probit model: 
 
     P{Y=1}  = P{ βx′  + ε > 0 } 
   = P{-ε < βx′  } = Φ( βx′ ) 
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Different isolates of the fungus are used which 
may differ with regard to genes other than the 
six pre-identified. 
 
We might model their effects as being selected 
from a normal distribution.  
 
Yijk  = kth observation from an attempted 
infection from the ith isolate (the donor) to the 
jth isolate (the recipient). 
 

ijkx  = vector of covariates for Yijk 
 
A reasonable model might then be: 
 
P{Yijk = 1| u}  = P{ βxijk′  + u1i + u2j + εijk > 0 }, 

 
where u1i represent the (random) effects of the 
donor isolate and u2j represent the (random) 
effects of the recipient isolate. 
 
This gives 
 

P{Yijk = 1| u} = βxijk′Φ(  + u1i + u2j ) 
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Consequences of introducing random factors 
 
On the mean 
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On the variance-covariance structure 
 
For example, for two observations with the same 
donor and recipient isolate: 
 

,2/)2/exp( 2 dzzzizi

YYE
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where 2

2
2
1

σσσ += . 
 
A correlation is therefore induced between 
responses which share one or more random 
effects. 
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Likelihood: 
 
The conditional density of Y given u is 

,)](1[)(
1

|

2121
ijk

yy

jiijkjiijk uuuu ijk

f
−

++′Φ−++′ΦΠ

=

βxβx

uY

 
so that the likelihood is given by  

uuuY dffL |∫∫= L , 
which, for this example, is a 256-dimensional 
integral. 
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Question of interest:  Are there other genes 
causing incompatibility?   
 
If there are no other genes affecting the 
transmission of the virus, then all isolates with a 
given set of fixed effects will behave the same. 
 
⇒ H0:  0,0 2

2
2
1 == σσ  

 
Suppose we reject H0.  How could we go about 
finding the genes that control incompatibility?  
We might look at the isolates that have the most 
extreme values of u1i or u2j.   
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Extreme values of u1i or u2j:  Want predicted 
values of the u1i and u2j. 
 

best predictor 
⎥
⎥
⎦

⎤

⎢
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⎡== Y|
11

~
ii uEu  

 
Two problems 
 
• Depends on unknown parameters 
•  and uYuY dfii

uuE |1|
1

∫=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

 

YuY,Yu fff =|  
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Research 
 
Some selected topics in research. 
 
1. Computing maximum likelihood estimates. 
McCulloch (1994) - uses Gibbs sampler 
McCulloch (1997) - uses Metropolis 
Booth and Hobert (1999) – Indep. sampler 
Geyer (1994) - Simulated ML 
Geyer and Thompson (1992) - Simulated ML 
Econometrics literature (Borsch-Supan and 
 Hajivassiliou, 1993) 
Casella and Berger (1995) - Another method of 
 simulating to find ML estimates 
Ruppert, et al (1984) - Stochastic approximation 
 
2. PQL, Laplace approximations 
Gilmour, Anderson and Rae (1984) 
Schall (1991) 
Breslow and Clayton (1994) 
Breslow and Lin (1995) 
Lin and Breslow (1996) 
Wolfinger (1994) 
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3. Bayes estimates 
Gilks, et al (1993) 
Zeger and Karim (1991) 
(But) Natarajan and McCulloch (1995) 
 
4. GEEs 
Zeger and Liang (1986) 
Liang and Zeger (1986) 
(But) Fitzmaurice (1995), Lipsitz, et al (1994) 
 
5. Other 
Engel and Keen (1994) 
Kuk (1995) 
McGilchrist (1994, 1995) 
Heagerty and Lele (1998) 
Drum and McCullagh (1993) 
 (1999) 

 161



SUMMARY 
 
The Good News: 
 
GLMMs can handle 
 Non-normal data 
 Nonlinear responses 
 Random effects covariance structure 
 
Can be used to 
 Incorporate correlations in models 
 Model the correlation structure 
 Identify sensitive subjects 
 Handle heterogeneous variances 
 
Modelling process 
 1. Distribution of the data? 
 2. What is to be modelled? 
 3. Factors? 
 4. Fixed or random? 
 
Software is available for linear and nonlinear 
normal models, some GLMs with normal 
random effects and for GEE estimation. 
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The not-so-Good News: 
 
Computing methods for much of the class of 
GLMMs is an area of active research.  Advances 
are being made in ML estimation, PQL, GEEs 
and Bayes methods.   
 
General purpose software is still developing. 
 
Tests and confidence intervals are asymptotic 
and approximate. 
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